Long Question
tanθ = secθ - 1 (0° ≤ θ ≤ 360°)
or, sinθ + cosθ = --- (i)
Now, Dividend factor, d.f. = = 2
Dividing both sides of (i) by d.f., we get,
sinθ + cosθ =
or, sinθ.cos30° + cosθ.sin30° =
or, sin(θ + 30°) = sin60°, sin(180° - 60°)
so, comparing the angles, we get,
θ = 30°, 90° where 0° ≤ θ ≤ 360°
2cos2θ = sinθ [0° ≤ θ ≤ 360°]
or, 2 - 2sin2θ = sinθ
or, 2sin2θ + sinθ - 2 = 0
or, 2sin2θ + 4sinθ - 3sinθ - 2 = 0
or, 2sinθ(sinθ + 2) - (sinθ + 2) = 0
or, (sinθ + 2)(2sinθ - ) = 0
Either, sinθ + 2 = 0
or, sinθ =
It has no solution.
OR, 2sinθ - = 0
or, sinθ =
or, sinθ = sin60°, sin(180° - 60°)
So, θ = 60°, 120°
sinθ + cosθ = 1 [0° ≤ θ ≤ 360°]
sinθ + cosθ = 1 ---- (i)
Now, Dividend factor,
d.f. =
Dividing both side of (i) by d.f. we get,
sinθ + cosθ =
or, sinθ.cos45° + cosθ.sin45° = sin45°
or, sin(θ + 45°) = sin45°, sin(180° - 45°), sin(360° + 45°)
or, sin(θ + 45°) = sin45°, sin135°, sin405°
Either, θ + 45° = 45°
So, θ = 0°
OR, θ + 45° = 135°
So, θ = 90°
OR, θ + 45° = 405°
So, θ = 360°
sinθ + cosθ = [0° ≤ θ ≤ 2πc]
sinθ + cosθ = ---- (i)
Now, Dividend factor,
d.f. =
=
= 2
Dividing both side of (i) by d.f. we get,
sinθ + cosθ =
or, sinθ.cos30° + cosθ.sin30° = sin45°
or, sin(θ + 30°) = sin45°, sin(180° - 45°), sin(360° + 45°)
or, sin(θ + 30°) = sin45°, sin135°, sin405°
Either, θ + 30° = 45°
So, θ = 15°
OR, θ + 30° = 135°
So, θ = 105°
OR, θ + 30° = 405°
So, θ = 375°
1 + tanα - secα = 0 [0° ≤ α ≤ 360°]
or, cosα + sinα = 1 ---- (i)
Now, Dividend factor,
d.f. =
=
= 2
Dividing both side of (i) by d.f. we get,
cosα + sinα =
or, sin30°.cosα + sin30°.cosα = sin30°
or, sin(30° + α) = sin30°, sin(180° - 30°), sin(360° + 30°)
or, sin(30°+ α) = sin30°, sin150°, sin405°
Either, 30°+ α = 30°
So, α = 0°
OR, 30°+ α = 135°
So, α = 120°
OR, 30°+ α = 390°
So, α = 360°
sinA + sin3A = sin2A [0° ≤ A ≤ 360°]
or, 2sin2A.cos(-A) = sin2A
or, 2sin2A.cosA - sin2A = 0 [cos(-θ) = cosθ]
or, sin2A(2cosA - 1) = 0
Either, sin2A = 0
or, 2sinA.cosA = 0
Again,
Either, sinA = 0
or, sinA = sin0°, sin(180° - 0°), sin(360° + 0°)
So, A = 0°, 180°, 360° ---- (A)
OR, cosA = 0
or, cosA = cos90°, cos(360 - 90)
So, A = 90°, 270° ---- (B)
OR, 2cosA - 1 = 0
or, cosA =
or, cosA = cos60°, cos(360° - 60°)
So, A = 60°, 300° ---- (C)
sinA = (1 - cosA) [0° ≤ A ≤ 360°]
sinA + cosA = ---- (i)
Now, Dividend factor,
d.f. =
=
= 2
Dividing both side of (i) by d.f. we get,
sinA + cosA =
or, sinA.cos60° + cosA.sin60° = sin60°
or, sin(A + 60°) = sin60°, sin(180° - 60°), sin(360° + 60°)
Either, A + 60° = 60°
So, A = 0°
OR, A + 60° = 120°
So, A = 60°
OR, A + 60° = 360° + 60°
So, A = 360°
sinθ - cos θ = [0° ≤ θ ≤ 360°]
sinθ - cos θ = ---- (i)
Now, Dividend factor,
d.f. =
=
= 2
Dividing both side of (i) by d.f. we get,
sinθ - cosθ =
or, sinθ.cos30° - cosθ.sin30° = sin45°
or, sin(θ - 30°) = sin45°, sin(180° - 45°), sin(360° + 45°)
Either, θ - 30° = 45°
So, θ = 75°
OR, θ - 30° = 135°
So, θ = 165°
OR, θ - 30° = 405°
So, θ = 435°
Since, 0° ≤ θ ≤ 360°, θ = 75°, 165°
sinx + cosx = 1 [0° ≤ x ≤ 2πc]
sinx + cosx = 1 ---- (i)
Now, Dividend factor,
d.f. =
=
= 2
Dividing both side of (i) by d.f. we get,
sinx + cosx =
or, sinx.cos30° + cosx.sin30° = sin30°
or, sin(x + 30°) = sin30°, sin(180° - 30°), sin(360° + 30°)
Either, x + 30° = 30°
So, x = 0°
OR, x + 30° = 150°
So, x = 120°
OR, x + 30° = 390°
So, x = 360°
cosθ + cos2θ + cos3θ = 0 [0° ≤ θ ≤ 180°]
or, 2cos2θ.cosθ + cos2θ = 0 [cos(-θ) = cosθ]
or, cos2θ(2cosθ + 1) = 0
Either, cos2θ = 0
or, 2cos2θ - 1 = 0
or, cosθ = ±
Taking positive,
cosθ = cos45°, cos(360° - 45°)
So, θ = 45°, 315° ---- (A)
Taking negative,
cosθ = -cos45°
cosθ = cos(180° - 45°), cos(180° + 45°)
So, θ = 135°, 225° ---- (B)
OR, cosθ = -
or, cosθ = cos60°
or, cosθ = cos(180° - 60°), cos(180° + 60°)
So, θ = 120°, 240° ---- (C)
(1 - )tanθ + 1 + = sec2θ [0° ≤ θ ≤ 360°]
or, (1 - )tanθ + 1 + = + tan2θ
or, tan2θ - (1 - )tanθ - 1 = 0
or, tan2θ - tanθ + tanθ - 1 = 0
or, tanθ(tanθ - 1) + 1(tanθ - 1) = 0
or, (tanθ + 1)(tanθ - 1) = 0
Either, tanθ = -1
or, tanθ = -tan45°
or, tanθ = tan(180° - 45°), tan(360° - 45°)
So, θ = 135°, 315°
OR, tanθ =
or, tanθ = tan30°
or, tanθ = tan30°, tan(180° + 30°)
So, θ = 30°, 210°
2sin2θ = cosθ [0° ≤ θ ≤ 360°]
or, 2 - 2cos2θ = cosθ
or, 2cos2θ + cosθ - 2 = 0
or, 2cos2θ + 4cosθ - 3cosθ - 2 = 0
or, 2cosθ(cosθ + 2) - (cosθ + 2) = 0
or, (2cosθ - )(cosθ + 2) = 0
Either, 2cosθ - = 0
or, cosθ =
or, cosθ = cos30°, cos(360° - 30°)
So, θ = 30°, 330°
OR, cosθ = -
It has not solution.
3sin2x + 4cosx = 4 [0° ≤ θ ≤ 2πc]
or, 3 - 32 + 4cosx - 4 = 0
or, 3cos2x - 4cosx + 1 = 0
or, 3cos2x - (3 + 1)cosx + 1 = 0
or, 3cos2x - 3cosx - cosx + 1 = 0
or, 3cosx(cosx - 1) - 1(cosx - 1) = 0
or, (3cosx - 1)(cosx - 1) = 0
Either, 3cosx - 1 = 0
or, cosx =
So, x = cos-1
OR, cosx - 1 = 0
or, cosx = 1
or, cosx = cos0°, cos(360° - 0°)
So, x = 0°, 360°
cosx = - sinx [0° ≤ θ ≤ 360°]
sinx + cosx =
Now, Dividend factor,
d.f. =
=
= 2
Dividing both side of (i) by d.f. we get,
sinx + cosx =
or, sinx.cos60° + cosx.sin60° = sin60°
or, sin(x + 60°) = sin60°, sin(180° - 60°), sin(360° + 60°)
Either, x + 60° = 60°
So, x = 0°
OR, x + 60° = 120°
So, x = 60°
OR, x + 60° = 360° + 60°
So, x = 360°
2sin2θ - cosθ = 1 [0° ≤ θ ≤ 2πc]
or, 2 - 2cos2θ - cosθ - 1 = 0
or, 2cos2θ + cosθ - 1 = 0
or, 2cos2θ + 2cosθ - cosθ - 1 = 0
or, 2cosθ(cosθ + 1) - 1(cosθ + 1) = 0
or, (2cosθ - 1)(cosθ + 1) = 0
Either, 2cosθ - 1 = 0
or, cosθ =
or, cosθ = cos60°, cos(360° - 60°)
So, θ = 60°, 300°
OR, cosθ = -1
or, cosθ = -cos0°
or, cosθ = cos(180° - 0°)
So, θ = 180°
cos2θ - sinθ - = 0 [0° ≤ θ ≤ 360°]
or, sin2θ + sinθ + = 1
or, (sinθ)2 + 2.sinθ. + = 1
or, = 1
or, sinθ = 1 -
or, sinθ =
or, sinθ = sin30°, sin(180° - 30°)
So, θ = 30°, 150°
As, 0° ≤ θ ≤ 360°, θ = 30°, 150°
6sin2θ + cosθ = 5 [0° ≤ θ ≤ 2πc]
or, 6 - 6cos2θ + cosθ = 5
or, 6cos2θ - cosθ - 1 = 0
or, 6cos2θ - (3 - 2)cosθ - 1 = 0
or, 6cos2θ - 3cosθ + 2cosθ - 1 = 0
or, 3cosθ(2cosθ - 1) + 1(2cosθ - 1) = 0
or, (3cosθ + 1)(2cosθ - 1) = 0
Either, 3cosθ + 1 = 0
or, cosθ = -
So, θ = cos-1
OR, cosθ =
or, cosθ = cos60°, cos(360° - 60°)
So, θ = 60°, 300°