If P, Q, and Q are the angles of a △PQR, prove that:
2(sin2Q+sin2R)(sin2Q−sin2R) - cosP = 1 - 4cos2P.cos2Q.sin2R
Given,
2P + 2Q + 2R = 2180°
or, 2Q + 2R = 2180° - 2P
For cos, cos(2Q + 2R) = cos(2180° - 2P) = sin2P ---- (i)
For sin, sin(2Q + 2R) = sin(2180° - 2P) = cos2P ---- (ii)
To prove: 2(sin2Q+sin2R)(sin2Q−sin2R) - cosP = 1 - 4cos2P.cos2Q.sin2R
Taking L.H.S,
= 2(sin2Q+sin2R)(sin2Q−sin2R) - cosP
= 2(sin22Q−sin22R) - cosP
= 2(21 - cosQ−21 - cosR) - cosP
= cosR - cosQ - cosP
= 2sin2Q + R.sin2Q - R - cos2.2P
= 2cos2P.sin2Q - R - (2cos22P - 1) [From 'ii']
= 1 - 2cos2P(cos2P−sin2Q - R)
= 1 - 2cos2P[sin(2Q+2R)−sin(2Q - R)] [From 'ii']
= 1 - 2cos2P(2cos2Q.sin2R)
∴ 1 - 4cos2P.cos2Q.sin2R = R.H.S
If A + B + C = 180° or πc then prove that: cos(B + C - A) + cos(C + A - B) + cos(A + B - C) = 1 + cosA.cosB.cosC
Given,
A + B + C = 180° ---- (i)
or, A + B = 180° - C
For cos, cos(A + B) = cos(180° - C) = -cosC ---- (ii)
To prove: cos(B + C - A) + cos(C + A - B) + cos(A + B - C) = 1 + cosA.cosB.cosC
Taking L.H.S,
= cos(B + C - A) + cos(C + A - B) + cos(A + B - C)
= cos(180° - A - A) + cos(180° - B - B) + cos(180° - C - C) [From (i)]
= cos(180° - 2A) + cos(180° - 2B) + cos(180° - 2C)
= -cos2A - cos2B - cos2C
= -(cos2A + cos2B + cos2C)
= -(2cos22A + 2B.cos22A - 2B + cos2C)
= -{2cos(A + B)cos(A - B) + cos2C}
= -{-2cosC.cos(A - B) + 2cos2C - 1} [From (ii)]
= 2cosC.cos(A - B) - 2cos2C + 1
= 2cosC {cos(A - B) - cosC} + 1
= 2cosC {cos(A - B) + cos(A + B)} + 1 [Fron (ii)]
= 2cosC.2cosAcosB + 1
∴ 1 + 4 cosA.cosB.cosC = R.H.S
If P + Q + R = 180° then prove that: sin2P + sin2Q + sin2R = 4sinP.sinQ.sinR
Given,
P + Q + R = 180°
or, P + Q = 180° - R
For sin, sin(P + Q) = sin(180° - R) = sinR ---- (i)
For cos, cos(P + Q) = cos(180° - R) = -cosR ---- (ii)
To prove: sin2P + sin2Q + sin2R = 4sinP.sinQ.sinR
Taking L.H.S,
= sin2P + sin2Q + sin2R
= 2sin(22P + 2Q)cos(22P - 2Q) + sin2R
= 2sin(P + Q).cos(P - Q) + sin2R
= 2sinR.cos(P- Q) + 2sinRcosR [From (i)]
= 2sinR{cos(P - Q) + cosR}
= 2sinR{cos(P - Q) - cos(P + Q)} [From (ii)]
= 2sinR.2sinPsinQ
∴ 4sinP.sinQ.sinR = R.H.S
If A + B + C = 180° or πc then prove that: sinA - sinB + sinC = 4sin2Acos2Bsin2C
Here,
2A + 2B + 2C = 2180°
or, 2A + 2B = 2180° - 2C
For cos, cos(2A + 2B) = cos(2180° - 2C) = sin2C ---- (i)
For sin, sin(2A + 2B) = sin(2180° - 2C) = cos2C ---- (ii)
To prove: sinA - sinB + sinC = 4sin2Acos2Bsin2C
Taking L.H.S,
= sinA - sinB + sinC
= 2cos2A + B.sin2A - B + sin2.2C
= 2sin2C.sin2A - B + 2sin2C.cos2C [From (i)]
= 2sin2C(sin2A - B + cos2C)
= 2sin2C{sin(2A - 2B) + sin(2A + 2B)} [From (ii)]
= 2sin2C.2sin2Acos2B
∴ 4sin2Acos2Bsin2C = R.H.S
If A + B + C = 180° or πc then prove that: cos2A + cos2B + 2cosAcosBcosC = sin2C.
Here,
A + B + C = 180°
or, A + B = 180° - C
For cos, cos(A + B) = cos(180° - C) = -cosC ---- (i)
To prove: cos2A + cos2B + 2cosAcosBcosC = sin2C
Taking L.H.S,
= cos2A + cos2B + 2cosAcosBcosC
= 21(2cos2A + 2cos2B + 4cosA.cosB.cosC)
= 21(1 + cos2A + 1 + cos2B + 4cosA.cosB.cosC)
= 21 {2cos22A + 2B.cos22A - 2B + 2 + 4cosA.cosB.cosC}
= 21{2cos(A + B).cos(A - B) + 2 + 4cosA.cosB.cosC}
= cos(A + B).cos(A - B) + 1 + 2cosA.cosB.cosC
= -cosC.cos(A - B) + 1 + 2cosA.cosB.cosC [From (i)]
= cosC {2cosA.cosB - cos(A - B)} + 1
= cosC {cos(A + B) + cos(A - B) - cos(A - B)} + 1
= cosC {cos(A + B)} + 1
= cosC(-cosC) + 1 [From (i)]
= -cos2 + 1
∴ sin2C = R.H.S
If P + Q + R = 180° then prove that: sinP + sinQ + sinR = 4cos2P.cos2Q.cos2R
Given,
2P + 2Q + 2R = 180°
or, 2P + 2Q = 2180° - 2R
For sin, sin(2P + 2Q) = sin(2180° - 2R) = cos2R ---- (i)
For cos, cos(2P + 2Q) = cos(2180° - 2R) = sin2R ---- (ii)
To prove: sinP + sinQ + sinR = 4cos2P.cos2Q.cos2R
Taking L.H.S,
= sinP + sinQ + sinR
= 2sin(2P + Q)cos(2P - Q) + sin2.2R
= 2cos2R.cos(2P - Q) + 2sin2Rcos2R [From (i)]
= 2cos2R {cos(2P - Q) + cos(2P + Q)} [From (ii)]
= 2cos2R.2cos2Pcos2Q
∴ 4cos2P.cos2Q.cos2R = R.H.S
If A + B + C = 180° or πc then prove that: sinB.sinCcosA + sinC.sinAcosB + sinA.sinBcosC = 2
Here,
A + B + C = 180°
or, A + B = 180° - C
For sin, sin(A + B) = sin(180° - C) = sinC ---- (i)
For cos, cos(A + B) = cos(180° - C) = -cosC ---- (ii)
To prove: sinB.sinCcosA + sinC.sinAcosB + sinA.sinBcosC = 2
Taking L.H.S,
= sinB.sinCcosA + sinC.sinAcosB + sinA.sinBcosC
= sinA.sinB.sinCsinA.cosA + sinB.cosB + sinC.cosC
= 2sinA.sinB.sinCsin2A + sin2B + sin2C
= 2sinA.sinB.sinC2sin(22A + 2B).cos(22A - 2B) + sin2C
= 2sinA.sinB.sinC2sin(A + B).cos(A - B) + sin2C
= 2sinA.sinB.sinC2sinC.cos(A - B) + 2sinC.cosC [From (i)]
= 2sinA.sinB.sinC2sinC{cos(A - B) - cos(A + B)} [From (ii)]
= 2sinA.sinB.sinC2sinC.2sinAsinB
= 2
If A + B + C = 180° or πc then prove that: sin2A + sin2B + sin2C = 2 + 2cosA.cosB.cosC
Here,
A + B + C = 180°
or, A + B = 180° - C
For sin, sin(A + B) = sin(180° - C) = sinC ---- (i)
For cos, cos(A + B) = cos(180° - C) = -cosC ---- (ii)
To prove: sin2A + sin2B + sin2C = 2 + 2cosA.cosB.cosC
Taking L.H.S,
= sin2A + sin2B + sin2C
= 21(2sin2A + 2sin2B + 2sin2C)
= 21(1 - cos2A + 1 - cos2B + 1 - cos2C)
= 21{3 - (cos2A + cos2B) - cos2C}
= 21 { 3 - 2cos(22A + 2B).cos(22A - 2B) - cos2C}
= 21{3 - 2cos(A + B).cos(A - B) - cos2C}
= 21{3 - 2(-cosC)cos(A - B) - cos2C} [From (ii)]
= 21{3 + 2cosC.cos(A - B) - 2(cos2C - 1)}
= 21{3 + 2cosC.cos(A - B) - 2cos2C + 1}
= 21[4 + 2cosC{cos(A - B) - cosC}]
= 21 [4 + 2cosC{cos(A - B) + cos(A + B)}] [From (ii)]
= 2 + cosC.2cosA.cosB
∴ 2 + 2cosA.cosB.cosC = R.H.S
If α + β + θ = π, prove that: sin(α + β - θ) + sin(β + θ - α) + sin(θ + α - β) = 4sinα.sinβ.sinθ
Here,
α + β + θ = π ---- (i)
or, α + β = π - θ
For sin, sin(α + β) = sin(π - θ) = sinθ ---- (ii)
For cos, cos(α + β) = cos(π - θ) = -cosθ ---- (iii)
To prove: sin(α + β - θ) + sin(β + θ - α) + sin(θ + α - β) = 4sinα.sinβ.sinθ
Taking L.H.S,
= sin(α + β - θ) + sin(β + θ - α) + sin(θ + α - β)
= sin(π - θ - θ) + sin(π - α - α) + sin(π - β - β) [From (i)]
= sin(π - 2θ) + sin(π - 2α) + sin(π - 2β)
= sin2θ + sin2α + sin2β
= 2sin(22α + 2β).cos(22α - 2β) + sin2θ
= 2sin(α + β).cos(α - β) + sin2θ
= 2sinθ.cos(α - β) + 2sinθ.cosθ [From (ii)]
= 2sinθ{cos(α - β) + cosθ}
= 2sinθ{cos(α - β) - cos(α + β)} [From (iii)]
= 2sinθ.2sinα.sinβ
∴ 4sinθ.sinα.sinβ = R.H.S
If A + B + C = 180° or πc then prove that: 4cos2A.cos2B.cos2Csin2A + sin2B + sin2C = 8sin2A.sin2B.sin2C
Here,
A + B + C = 180°
or, A + B = 180° - C
For sin, sin(A + B) = sin(180° - C) = sinC ---- (i)
For cos, cos(A + B) = cos(180° - C) = -cosC ---- (ii)
To prove: 4cos2A.cos2B.cos2Csin2A + sin2B + sin2C = 8sin2A.sin2B.sin2C
Taking L.H.S,
= 4cos2A.cos2B.cos2Csin2A + sin2B + sin2C ---- (A)
Firstly,
= sin2A + sin2B + sin2C
= 2sin(22A + 2B).cos(22A - 2B) + sin2C
= 2sin(A + B).cos(A - B) + sin2C
= 2sinC.cos(A - B) + 2sinC.cosC [From (i)]
= 2sinC{cos(A - B) + cosC}
= 2sinC{cos(A - B) + cos(A + B)} [From (ii)]
= 2sinC.2sinA.sinB ---- (B)
Finally, putting the value of (B) in (A), we get,
= 4cos2A.cos2B.cos2C4sinC.sinA.sinB
= cos2A.cos2B.cos2Csin2.2Csin2.2Asin2.2B
= cos2A.cos2B.cos2C2sin2Ccos2C×2sin2Acos2A×2sin2Bcos2B
∴ 8sin2A.sin2B.sin2C = R.H.S
If A + B + C = 180° or πc then prove that: cosA + cosB + cosC = 1 + 4sin2A.sin2B.sin2C
Given,
2A + 2B + 2C = 180°
2A +
2B =
2180° -
2C
cos(
2A +
2B) = cos(
2180° -
2C) = sin
2C ---- (i)
sin(
2A +
2B) = sin(
2180° -
2C) = cos
2C ---- (ii)
To prove: cosA + cosB + cosC = 1 + 4sin2A.sin2B.sin2C
Taking L.H.S,
= cosA + cosB + cosC
= 2cos2A + Bcos2A - B + cos2.2C
= 2sin2Ccos2A - B + 1 - 2sin22C [From (i)]
= 2sin2C (cos2A - B - sin2C) + 1
= 2sin2C (cos2A - B - cos2A + B) + 1 [From (i)]
= 1 + 2sin2C.2sin2A.sin2B
∴ 1 + 4sin2A.sin2B.sin2C = R.H.S
If A + B + C = 180° or πc then prove that: sin22A + sin22B + sin22C = 1 - 2sin2A.sin2B.sin2C
Here,
A + B + C = 180°
2A +
2B +
2C =
2180°
2A + 2B = 2180° - 2C
cos(2A + 2B) = cos(2180° - 2C) = sin2C ---- (i)
sin(2A + 2B) = sin(2180° - 2C) = cos2C ---- (ii)
To prove: sin22A + sin22B + sin22C = 1 - 2sin2A.sin2B.sin2C
Taking L.H.S,
= sin22A + sin22B + sin22C
= 21(2sin22A + 2sin22B + 2sin22C)
= 21(1 - cos2.2A + 1 - cos2.2B + 1 - cos2.2C)
= 21{3 - (cosA + cosB) - cosC}
= 21{3 - 2cos(2A + B)cos(2A - B) - cos2.2C}
= 21{3 - 2sin2Ccos(2A - B) - (1 - 2sin22C)}
= 21{3 - 2sin2Ccos(2A - B) - 1 + 2sin22C}
= 21{2 + 2sin22C - 2sin2Ccos(2A - B)}
= 22[1 + sin2C{sin2C - cos(2A - B)}]
= 1 + sin2C{cos(2A + B) - cos(2A - B)} [From (i)]
= 1 - sin2C{cos(2A - B) - cos(2A + B)}
= 1 - sin2C.2sin2A.sin2B
∴ 1 - 2sin2A.sin2B.sin2C = R.H.S
If X + Y + Z = 180° then prove that: cos2X + cos2Y - cos2Z = 1 - 4sinX.sinY.cosZ
Here,
X + Y + Z = 180°
X + Y = 180° - Z
sin(X + Y) = sin(180° - Z) = sinZ ---- (i)
cos(X + Y) = cos(180° - Z) = -cosZ ---- (ii)
To prove: cos2X + cos2Y - cos2Z = 1 - 4sinX.sinY.cosZ
= cos2X + cos2Y - cos2Z
= 2cos(22X + 2Y).cos(22X - 2Y) - cos2Z
= 2cos(X + Y).cos(X - Y) - cos2Z
= 2(-cosZ).cos(X -Y) - (2cos2Z - 1) [From (ii)]
= -2cosZ.cos(X - Y) - 2cos2Z + 1
= -2cosZ{cos(X- Y) + cosZ} + 1
= -2cosZ{cos(X - Y) - cos(X + Y)} + 1 [From (ii)]
= -2cosZ.2sinX.sinY + 1
∴ 1 - 4sinXsinYcosZ = R.H.S
If A + B + C = 180° or πc then prove that: sin22A + sin22B - sin22C = 1 - 2cos2A.cos2B.sin2C
Here,
A + B + C = 180°
2A +
2B +
2C =
2180°
2A + 2B = 2180° - 2C
sin(2A + 2B) = sin(2180° - 2C) = cos2C ---- (i)
cos(2A + 2B) = cos(2180° - 2C) = sin2C ---- (ii)
To prove: sin22A + sin22B - sin22C = 1 - 2cos2A.cos2B.sin2C
Taking L.H.S,
= sin22A + sin22B - sin22C
= 21(2sin22A + 2sin22B - 2sin22C)
= 21{1 - cos2.2A + 1 -cos2.2B -(1 - cos2.2C)}
= 21(1 - cosA + 1 - cosB - 1 + cosC)
= 21{1 - (cosA + cosB) + cosC}
= 21{1 - 2cos(2A + B).cos(2A - B) + cos2.2C}
= 21{1 - 2sin2C.cos(2A - B) + 1 - 2sin22C} [From (ii)]
= 21[2 - 2sin2C{cos(2A - B) + sin2C}]
= 22[1 - sin2C{cos(2A - B) + cos(2A + B)}] [From (ii)]
= 1 - sin2C.2cos2A.cos2B
∴ 1 - 2cos2A.cos2B.sin2C = R.H.S
If A + B + C = 180° or πc then prove that: sin(B + C - A) + sin(C + A - B) + sin(A + B - C) = 4sinA.sinB.sinC
Here,
A + B + C = 180° ---- (i)
A + B = 180° - C
sin(A + B) = sin(180° - C) = sinC ---- (ii)
cos(A + B) = cos(180° - C) = -cosC ---- (iii)
To prove: sin(B + C - A) + sin(C + A - B) + sin(A + B - C) = 4sinA.sinB.sinC
Taking L.H.S,
= sin(B + C - A) + sin(C + A - B) + sin(A + B - C)
= sin(180° - A - A) + sin(180° - B - B) + sin(180° - C - C) [From (i)]
= sin(180° - 2A) + sin(180° - 2B) + sin(180° - 2C)
= sin2A + sin2B + sin2C
= 2sin(22A + 2B).cos(22A - 2B) + sin2C
= 2sin(A + B).cos(A - B) + sin2C
= 2sinC.cos(A - B) + 2sinC.cosC [From (ii)]
= 2sinC {cos(A - B) + cosC}
= 2sinC {cos(A - B) - cos(A + B)} [From (iii)]
= 2sinC.2sinA.sinB
∴ 4sinA.sinB.sinC = R.H.S
If A + B + C = 180° or πc then prove that: cos2A + cos2B + cos2C = -1 - 4cosA.cosB.cosC
Here,
A + B + C = 180°
A + B = 180° - C
sin(A + B) = sin(180° - C) = sinC ---- (i)
cos(A + B) = cos(180° - C) = -cosC ---- (ii)
To prove: cos2A + cos2B + cos2C = -1 - 4cosA.cosB.cosC
Taking L.H.S,
= 2cos(22A + 2B)cos(22A - 2B) + cos2C
= 2cos(A + B).cos(A - B) + cos2C
= -2cosC.cos(A - B) + 2cos2C - 1
= -2cosC{cos(A - B) - cosC} - 1
= -2cosC{cos(A - B) + cos(A + B)} - 1 [From (ii)]
= -2cosC.2cosA.cosB - 1
∴ -4cosA.cosB.cosC - 1 = R.H.S
If A + B + C = 180° or πc then prove that: sin2A - sin2B + sin2C = 2sinA.cosB.sinC
Here,
A + B + C = 180°
A + B = 180° - C
sin(A + B) = sin(180° - C) = sinC ---- (i)
cos(A + B) = cos(180° - C) = -cosC ---- (ii)
To prove: sin2A - sin2B + sin2C = 2sinA.cosB.sinC
Taking L.H.S,
= sin2A - sin2B + sin2C
= 21(2sin2A - 2sin2B + 2sin2C)
= 21(1 - cos2A - 1 + cos2B + 1 - cos2C)
= 21(1 - cos2A + cos2B - cos2C)
= 21(1 + cos2B - cos2A - cos2C)
= 21{1 + 2sin(22A + 2B)sin(22A - 2B) - cos2C}
= 21 {1 + 2sin(A + B).sin(A - B) - cos2C}
= 21 {1 + 2sinC.sin(A - B) - (1 - 2sin2C)} [From (i)]
= 21 {1 + 2sinC.sin(A - B) - 1 + 2sin2C}
= 21 [2sinC{sin(A - B) + sinC}]
= 21 [2sinC{sin(A - B) + sin(A + B)}] [From (i)]
= 21(2sinC.2sinA.cosB)
∴ 2sinA.cosB.sinC = R.H.S