Without using the calculator or table, find the value of:
sin100°.sin120°.sin140°.sin160°
Here,
= sin100°.sin120°.sin140°.sin160°
= sin(90° + 10°).sin(90° + 30°).sin(90° + 50°).sin(90° + 70°)
= cos10°.cos30°.cos50°.cos70°
= cos10°.
23.
22.cos50°.cos70°
= 43.cos10°.(2cos50°.cos70°)
= 43.cos10°.{cos(50° + 70°) + cos(50° - 70°)}
= 43.cos10°{cos120° + cos(-20°)}
= 43.22.(cos10°.cos120° + cos10°.cos20°) [cos(-θ) = cos(θ)]
= 83(2cos10°.cos120° + 2cos10°.cos20°)
= 83{2cos10°.-21 + cos(10° + 20°) + cos(10° - 20°)}
= 83(-cos10° + cos30° + cos10°) [cos(-θ) = cos(θ)]
= 83 × 23
= 163
sec2θ−1sec4θ - 1 = tan4θ.cotθ
Here,
sec2θ−1sec4θ - 1 = tan4θ.cotθ
Taking L.H.S,
= sec2θ−1sec4θ - 1
= cos4θ1 - cos4θ × 1 - cos2θcos2θ
= cos4θ1 - cos2.2θ × 1 - (2cos2θ - 1)cos2θ
= cos4θ1 - (2cos22θ - 1) × 1 - 2cos2θ + 1cos2θ
= cos4θ2(1 - cos22θ) × 2(1 - cos2θ)cos2θ
= cos4θsin22θ × sin2θcos2θ
= cos4θsin2θ×2sinθcosθ × sin2θcos2θ
= cos4θ2sin2θcos2θ × sin2θsinθcosθ
= cos4θsin4θ × cotθ
∴ tan4θ.cotθ = R.H.S
8(sin6p + cos6p) = 5 + 3cos4p
Here,
8(sin
6p + cos
6p) = 5 + 3cos4p
Taking L.H.S,
= 8 {(sin2p)3 + (cos2p)3}
= 8 (sin2p + cos2p) (sin4p - sin2pcos2p + cos4p)
= 8 {(sin2p + cos2p)2 - 2sin2pcos2p - sin2pcos2p}
= 8 {1 - 3sin2pcos2p}
= 8 {1 - 43(2sinpcosp)2}
= 8 {1 - 43(sin2p)2}
= 8 {1 - 83(2sin22p)}
= 88{8 - 3(1 - cos2.2p)}
= 8 -3 + 3cos4p
∴ 5 + 3cos4p = R.H.S
Prove that: 1 + cosα + sinα1 - cosα + sinα =tan2α
Here,
1 + cosα + sinα1 - cosα + sinα =tan
2α
Taking L.H.S,
= 1 + cosα + sinα1 - cosα + sinα
= 1 + cos2.2α + sinα1 - cos2.2α + sinα
= 2cos22α + sin2.2α2sin22α + sin2.2α
= 2cos22α + 2sin2αcos2α2sin22α + 2sin2αcos2α
= 2cos2α(cos2α + sin2α)2sin2α(sin2α + cos2α)
∴ tan
2α = R.H.S
tanθ + 2tan2θ + 4cot4θ = cotθ
Here,
tanθ + 2tan2θ + 4cot4θ = cotθ
Taking L.H.S,
= tanθ + 2tan2θ + 4cot4θ
= tanθ + 2tan2θ + sin4θ4cos4θ
= tanθ + 2tan2θ + 2sin2θ.cos2θ4cos4θ
= tanθ + 2tan2θ + 2sinθ.cosθ.cos2θ2cos4θ
= tanθ + cos2θ2sin2θ + sinθ.cosθ.cos2θcos4θ
= tanθ + sinθ.cosθ.cos2θ2sin2θ . sinθ . cosθ + cos4θ
= tanθ + sinθ.cosθ.cos2θsin2θ . sin2θ + cos2.2θ
= tanθ + sinθ.cosθ.cos2θsin22θ + 1 - 2sin22θ
= tanθ + sinθ.cosθ.cos2θ1 - sin22θ
= tanθ + sinθ.cosθ.cos2θcos22θ
= tanθ + sinθ.cosθcos2θ × 22
= tanθ + sin2θ2cos2θ
= tanθ + 2cot2θ
= cosθsinθ + 2sinθ.cosθ2cos2θ
= sinθcosθsin2θ + cos2θ
= sinθcosθsin2θ + 1 - 2sin2θ
= sinθcosθ1 - sin2θ
= sinθcosθcos2θ
= cotθ
sin20°.sin30°.sin40°.sin80° = 163
Here,
sin20°.sin30°.sin40°.sin80° =
163
Taking L.H.S,
= sin20°.sin30°.sin40°.sin80°
= 2sin20° × 22sin40°.sin80°
= 4sin20°{cos(40° - 80°) - cos(40° + 80°)}
= 4sin20°{cos(-40°) - cos120°}
= 4sin20°{cos40° + 21} [cos(-θ) = cosθ]
= 8sin20°(2cos40° + 1)
= 81(2sin20°.cos40° + sin20°)
= 81{sin(20° + 40°) + sin(20° - 40°) + sin20°}
= 81(sin60° - sin20° + sin20°)
∴
163 = R.H.S
cos3A.cos3A + sin3A.sin3A = cos32A
Here,
cos
3A.cos3A + sin
3A.sin3A = cos
32A
Taking L.H.S,
= cos3A.cos3A + sin3A.sin3A
= 44cos3A.cos3A + 4sin3A.sin3A
= 41 {(cos3A + 3cosA)cos3A + (3sinA - sin3A)sin3A}
= 41 {cos23A + 3cosA.cos3A + 3sinA.sin3A - sin23A}
= 41 {cos2.3A + 3(cosA.cos3A + sinA.sin3A)}
= 41 {cos6A + 3cos(-2A)}
= 41 {cos6A + 3cos2A} [cos(-θ) = cosθ]
= 41 {cos6A + 4cos32A - cos3.2A}
= 41 (cos6A + 4cos32A - cos6A)
∴ cos
32A = R.H.S
cos2A + sin2A.cos2B = cos2B + sin2B.cos2A
Here,
cos
2A + sin
2A.cos2B = cos
2B + sin
2B.cos2A
Taking L.H.S,
= cos2A + sin2A(1 - 2sin2B)
= cos2A + sin2A - 2sin2A.sin2B
= 1 - 2sin2A.sin2B
= cos2B + sin2B - 2sin2A.sin2B
= cos2B + sin2B(1 - 2sin2A)
∴ cos
2B + sin
2B.cos2A = R.H.S
If sinA1 + cosA1 = sinB1 + cosB1, prove that: cot(2A + B) = tanA.tanB
Given:
sinA1 +
cosA1 =
sinB1 +
cosB1
To prove: cot
(2A + B) = tanA.tanB
Now,
sinA1 - cosB1 = sinB1 - cosA1
or, sinA.cosBcosB - sinA = sinB.cosAcosA - sinB
or, cosA.cosB.sinB - sinA.sinB.cosA = sinA.cosA.cosB - sinA.sinB.cosB
Dividing both sides by cosA.cosB.cosC, we get,
or, cosCsinB - cosCtanA.tanB.cosA = cosCtanA.cosA - cosCtanA.tanB.cosB
or, sinB - tanA.tanB.cosA = tanA.cosA - tanA.tanB.cosB
or, sinB - tanA.cosA = tanA.tanB(cosA - cosB)
or, sinB - cosAsinA.cosA = tanA.tanB(cosA - cosB)
or, cosA - cosBsinB - sinA = tanA.tanB
or, 2sin(2B - A)sin(2B + A)2sin(2B - A)cos(2B + A) = tanA.tanB
or, cot(2B + A) = tanA.tanB
∴ cot(2A + B) = tanA.tanB
8(1 + sin8π)(1 + sin83π)(1 - sin85π)(1 - sin87π) = 1
Here,
8(1 + sin8π)(1 + sin83π)(1 - sin85π)(1 - sin87π) = 1
Taking L.H.S,
= 8(1 + sin8π)(1 + sin83π)(1 - sin85π)(1 - sin87π)
= 8(1 + sin8π){(1 - sin(π - 8π)}(1 + sin83π){(1 - sin(π - 83π)}
= 8(1 + sin8π)(1 - sin8π)(1 + sin83π)(1 - sin83π)
= 8(1 - sin28π)(1 - sin283π)
= 8(1 - sin283π - sin28π + sin283πsin28π)
= 8{1 - cos2(2π - 8π) - sin28π + cos2(2π - 8π)sin28π}
= 8{1 - (cos28π + sin28π) + cos28πsin28π}
= 8{1 - 1 + 41(2sin8πcos8π)2}
= 48(sin2.8π)2
= 2(sin4π)2
= 2(21)2
= 22
= 1
8cos10°.cos50°.cos70° = 3
Here,
8cos10°.cos50°.cos70° =
3
Taking L.H.S,
= 4cos10°.2cos50°cos70°
= 4cos10°{cos(50° + 70°) + cos(50° - 70°)}
= 4cos10°(cos120° + cos20°) [cos(-θ) = cosθ]
= 4cos10°(-21 + cos20°)
= 2(-cos10° + 2cos10°cos20°)
= 2{-cos10° + cos(10° + 20°) + cos(10° - 20°)}
= 2{-cos10° + cos30° + cos(-10)°}
= 2(-cos10° + 23 + cos10°)
= 3
4cosA.cos(60° - A).cos(60° + A) = cos3A
Here,
4cosA.cos(60° - A).cos(60° + A) = cos3A
Taking L.H.S,
= 2cosA.2cos(60° - A).cos(60° + A)
= 2cosA{cos(60° - A + 60° + A) + cos(60° - A - 60° - A)}
= 2cosA{cos120° + cos(-2A)}
= 2(-2cosA + cosA.cos2A) [cos(-θ) = cosθ]
= -cosA + 2xosA.cos2A
= -cosA + cos(A + 2A) + cos(A - 2A)
= -cosA + cos3A + cosA
∴ cos3A = R.H.S
16sin20°.sin40°.sin60°.sin80° = 3
Here,
16sin20°.sin40°.sin60°.sin80° = 3
Taking L.H.S,
= 16sin20°.sin40°.sin60°.sin80°
= 16sin20°.sin40°.23.sin80°
= 43.sin20°.2sin80°sin40°
= 43.sin20°{cos(80° - 40°) - cos(80° + 40°)}
= 43.sin20°(cos40° - cos120°)
= 43.sin20°(cos40° + 21)
= 23.sin20°(2cos40° + 1)
= 23.(2sin20°.cos40° + sin20°)
= 23.{sin(20° + 40°) + sin(20° - 40°) + sin20°}
= 23.{sin60° - sin20° + sin20°}
= 23.23
= 3
If x + y = 45°, prove that: cotx.coty(cotx + 1)(coty + 1) = 2
Given: x + y = 45°
To prove:
cotx.coty(cotx + 1)(coty + 1) = 2
Now,
x + y = 45°
Taking 'cot' ratio on both side, we get,
or, cot(x + y) = cot45°
or, cotx+cotycotx.coty - 1 = 1
or, cotx.coty = cotx + coty + 1
Adding 'cotx.coty' on both side, we get,
or, 2cotx.coty = cotx + coty + 1 + cotx.coty
or, 2cotx.coty = 1(cotx + 1) + coty(1 + cotx)
or, 2cotx.coty = (cotx + 1)(1 + coty)
∴ cotx.coty(cotx + 1)(coty + 1) = 2
sinα.cosα - sinβ.cosβsin2α - sin2β = tan(α + β)
Here,
sinα.cosα - sinβ.cosβsin2α - sin2β = tan(α + β)
Taking R.H.S,
= tan(α + β)
= cos(α + β)sin(α + β)
= cosαcosβ - sinαsinβsinαcosβ + cosαsinβ × sinαcosβ - cosαsinβsinαcosβ - cosαsinβ
= sinα.cosα.cos2β - cos2α.sinβ.cosβ - sin2α.sinβ.cosβ + sinα.cosα.sin2βsin2αcos2β - cos2αsin2β
= sinα.cosα(cos2β + sin2β) - sinβ.cosβ(cos2α + sin2α)sin2α(1 - sin2β) - (1 - sin2α)sin2β
= sinα.cosα.1 - sinβ.cosβ.1sin2α - sin2αsin2β - sin2β + sin2αsin2β
∴
sinα.cosα - sinβ.cosβsin2α - sin2β = L.H.S
sinθ.sin(60° - θ).sin(60° + θ) = 41sin3θ
Here,
sinθ.sin(60° - θ).sin(60° + θ) =
41sin3θ
Taking L.H.S,
= sinθ.sin(60° - θ).sin(60° + θ)
= 21sinθ.2sin(60° - θ).sin(60° + θ)
= 21sinθ {cos(60° - θ - 60° - θ) - cos(60° - θ + 60° - θ)}
= 21sinθ {cos(-2θ) - cos120°}
= 21sinθ {cos2θ + 21}
= 41 (2sinθ.cos2θ + sinθ)
= 41 {sin(θ + 2θ) + sin(θ - 2θ) + sinθ}
= 41 (sin3θ - sinθ + sinθ)
∴
41sin3θ = R.H.S
3 cosec20° - sec20° = 4
Here,
3 cosec20° - sec20° = 4
Taking L.H.S,
= 3 cosec20° - sec20°
= sin20°3 - cos20°1
= sin20°.cos20°3cos20° - sin20°
= sin20°.cos20°cot30°.cos20° - sin20°
= sin30°.sin20°.cos20°cos30°.cos20° - sin30°sin20°
= sin30°.2sin20°.cos20°2×cos(30° + 20°)
= sin30°.sin40°2cos50°
= 21sin40°2cos(90° - 40°)
= sin40°4sin40°
∴ 4 = R.H.S
sin4x = 81 (3 - 4cos2x + cos4x)
Here,
sin
4x =
81 (3 - 4cos2x + cos4x)
Taking L.H.S,
= 81 (3 - 4cos2x + cos4x)
= 81 {3 - 4(1 - 2sin2x) + 1 - 2 sin22x}
= 81 (3 - 4 + 8sin2x + 1 - 2 sin22x)
= 81 (-1 + 8sin2x + 1 - 2sin22x)
= 82 (4sin2x - sin22x)
= 41 {4sin2x - (2sinx.cosx)2}
= 41 (4sin2x - 4sin2x.cos2x)
= 44 sin2x (1 - cos2x)
= sin2x.sin2x
∴ sin
4x = R.H.S
If 2tanα = 3tanβ, prove that: tan(α - β) = 5 - cos2βsin2β
Given: 2tanα = 3tanβ
tanα =
23tanβ ---- (A)
To prove: tan(α - β) =
5 - cos2βsin2β
Taking L.H.S,
= tan(α - β)
= 1 + tanα.tanβtanα - tanβ
= 1 + 23tanβtanβ23tanβ - tanβ [From (A)]
= 23tanβ - 2tanβ × 2 + 3tan2β2
= 2 + 3tan2βtanβ
= 2 + cos2β3sin2βcosβsinβ
= cosβsinβ × 2cos2β + 3sin2βcos2β
= 2cos2β + 3sin2βsinβ.cosβ
= 2.2cos2β + 3.2sin2β2sinβ.cosβ
= 2(1 + cos2β) + 3(1 - cos2β)2sinβ.cosβ
= 2 + 2cos2β + 3 - 3cos2βsin2β
∴
5 - cos2βsin2β = R.H.S