Multiple, Sub-multiple Angles, and Transformation of Trigonometric Formula

Without using the calculator or table, find the value of:
sin100°.sin120°.sin140°.sin160°

Here,
= sin100°.sin120°.sin140°.sin160°
= sin(90° + 10°).sin(90° + 30°).sin(90° + 50°).sin(90° + 70°)
= cos10°.cos30°.cos50°.cos70°
= cos10°.32\frac{\sqrt{3}}{2}.22\frac{2}{2}.cos50°.cos70°
= 34\frac{\sqrt{3}}{4}.cos10°.(2cos50°.cos70°)
= 34\frac{\sqrt{3}}{4}.cos10°.{cos(50° + 70°) + cos(50° - 70°)}
= 34\frac{\sqrt{3}}{4}.cos10°{cos120° + cos(-20°)}
= 34\frac{\sqrt{3}}{4}.22\frac{2}{2}.(cos10°.cos120° + cos10°.cos20°) [cos(-θ) = cos(θ)]
= 38\frac{\sqrt{3}}{8}(2cos10°.cos120° + 2cos10°.cos20°)
= 38\frac{\sqrt{3}}{8}{2cos10°.-12\frac{1}{2} + cos(10° + 20°) + cos(10° - 20°)}
= 38\frac{\sqrt{3}}{8}(-cos10° + cos30° + cos10°) [cos(-θ) = cos(θ)]
= 38\frac{\sqrt{3}}{8} × 32\frac{\sqrt{3}}{2}
= 316\frac{3}{16}

sec4θ - 1sec2θ1\frac{\text{sec4θ - 1}}{sec2θ - 1} = tan4θ.cotθ

Here,
sec4θ - 1sec2θ1\frac{\text{sec4θ - 1}}{sec2θ - 1} = tan4θ.cotθ

Taking L.H.S,
= sec4θ - 1sec2θ1\frac{\text{sec4θ - 1}}{sec2θ - 1}
= 1 - cos4θcos4θ\frac{\text{1 - cos4θ}}{cos4θ} × cos2θ1 - cos2θ\frac{cos2θ}{\text{1 - cos2θ}}
= 1 - cos2.2θcos4θ\frac{\text{1 - cos2.2θ}}{cos4θ} × cos2θ1 - (2cos2θ - 1)\frac{cos2θ}{\text{1 - }(2cos^{2}θ \text{ - 1})}
= 1 - (2cos22θ - 1)cos4θ\frac{\text{1 - (}2cos^{2}2θ\text{ - 1)}}{cos4θ} × cos2θ1 - 2cos2θ + 1\frac{cos2θ}{\text{1 - }2cos^{2}θ \text{ + 1}}
= 2(1 - cos22θ)cos4θ\frac{\text{2(1 - }cos^{2}2θ)}{cos4θ} × cos2θ2(1 - cos2θ)\frac{cos2θ}{\text{2(1 - }cos^{2}θ)}
= sin22θcos4θ\frac{sin^{2}2θ}{cos4θ} × cos2θsin2θ\frac{cos2θ}{sin^2θ}
= sin2θ×2sinθcosθcos4θ\frac{sin2θ \times 2sinθcosθ}{cos4θ} × cos2θsin2θ\frac{cos2θ}{sin^{2}θ}
= 2sin2θcos2θcos4θ\frac{2sin2θcos2θ}{cos4θ} × sinθcosθsin2θ\frac{sinθcosθ}{sin^{2}θ}
= sin4θcos4θ\frac{sin4θ}{cos4θ} × cotθ

∴ tan4θ.cotθ = R.H.S

8(sin6p + cos6p) = 5 + 3cos4p

Here,
8(sin6p + cos6p) = 5 + 3cos4p

Taking L.H.S,
= 8 {(sin2p)3 + (cos2p)3}
= 8 (sin2p + cos2p) (sin4p - sin2pcos2p + cos4p)
= 8 {(sin2p + cos2p)2 - 2sin2pcos2p - sin2pcos2p}
= 8 {1 - 3sin2pcos2p}
= 8 {1 - 34\frac 34(2sinpcosp)2}
= 8 {1 - 34\frac 34(sin2p)2}
= 8 {1 - 38\frac 38(2sin22p)}
= 88\frac 88{8 - 3(1 - cos2.2p)}
= 8 -3 + 3cos4p

∴ 5 + 3cos4p = R.H.S

Prove that: 1 - cosα + sinα1 + cosα + sinα\frac{\text{1 - cosα + sinα}}{\text{1 + cosα + sinα}} =tanα2\frac{α}{2}

Here,
1 - cosα + sinα1 + cosα + sinα\frac{\text{1 - cosα + sinα}}{\text{1 + cosα + sinα}} =tanα2\frac{α}{2}

Taking L.H.S,
= 1 - cosα + sinα1 + cosα + sinα\frac{\text{1 - cosα + sinα}}{\text{1 + cosα + sinα}}
= 1 - cos2.α2 + sinα1 + cos2.α2 + sinα\frac{\text{1 - }cos2.\fracα2\text{ + sinα}}{\text{1 + }cos2.\fracα2\text{ + sinα}}
= 2sin2α2 + sin2.α22cos2α2 + sin2.α2\frac{2sin^2\frac α2 \text{ + } sin2.\frac α2}{2cos^2\frac α2 \text{ + } sin2.\fracα2}
= 2sin2α2 + 2sinα2cosα22cos2α2 + 2sinα2cosα2\frac{2sin^2\frac α2 \text{ + } 2sin\frac α2 cos\frac α2}{2cos^2\frac α2 \text{ + } 2sin\frac α2 cos\frac α2}
= 2sinα2(sinα2 + cosα2)2cosα2(cosα2 + sinα2)\frac{2sin\frac α2(sin\frac α2 \text{ + }cos\frac α2)}{2cos\frac α2(cos\frac α2 \text{ + }sin\frac α2)}

∴ tanα2\frac α2 = R.H.S

tanθ + 2tan2θ + 4cot4θ = cotθ

Here,
tanθ + 2tan2θ + 4cot4θ = cotθ

Taking L.H.S,
= tanθ + 2tan2θ + 4cot4θ
= tanθ + 2tan2θ + 4cos4θsin4θ\frac{4cos4θ}{sin4θ}
= tanθ + 2tan2θ + 4cos4θ2sin2θ.cos2θ\frac{4cos4θ}{2sin2θ . cos2θ}
= tanθ + 2tan2θ + 2cos4θ2sinθ.cosθ.cos2θ\frac{2cos4θ}{2sinθ . cosθ . cos2θ}
= tanθ + 2sin2θcos2θ\frac{2sin2θ}{cos2θ} + cos4θsinθ.cosθ.cos2θ\frac{cos4θ}{sinθ . cosθ . cos2θ}
= tanθ + 2sin2θ . sinθ . cosθ + cos4θsinθ.cosθ.cos2θ\frac{\text{2sin2θ . sinθ . cosθ + cos4θ}}{sinθ . cosθ . cos2θ}
= tanθ + sin2θ . sin2θ + cos2.2θsinθ.cosθ.cos2θ\frac{\text{sin2θ . sin2θ + cos2.2θ}}{sinθ . cosθ . cos2θ}
= tanθ + sin22θ + 1 - 2sin22θsinθ.cosθ.cos2θ\frac{sin^{2}2θ\text{ + 1 - }2sin^{2}2θ}{sinθ . cosθ . cos2θ}
= tanθ + 1 - sin22θsinθ.cosθ.cos2θ\frac{\text{1 - }sin^{2}2θ}{sinθ . cosθ . cos2θ}
= tanθ + cos22θsinθ.cosθ.cos2θ\frac{cos^{2}2θ}{sinθ . cosθ . cos2θ}
= tanθ + cos2θsinθ.cosθ\frac{cos2θ}{sinθ . cosθ} × 22\frac 22
= tanθ + 2cos2θsin2θ\frac{2cos2θ}{sin2θ}

= tanθ + 2cot2θ
= sinθcosθ\frac{sinθ}{cosθ} + 2cos2θ2sinθ.cosθ\frac{2cos2θ}{2sinθ.cosθ}
= sin2θ + cos2θsinθcosθ\frac{sin^2θ \text{ + cos2θ}}{sinθcosθ}
= sin2θ + 1 - 2sin2θsinθcosθ\frac{sin^2θ \text{ + 1 - }2sin^{2}θ}{sinθcosθ}
= 1 - sin2θsinθcosθ\frac{\text{1 - }sin^{2}θ}{sinθcosθ}
= cos2θsinθcosθ\frac{cos^{2}θ}{sinθcosθ}

= cotθ

sin20°.sin30°.sin40°.sin80° = 316\frac{\sqrt3}{16}

Here,
sin20°.sin30°.sin40°.sin80° = 316\frac{\sqrt3}{16}

Taking L.H.S,
= sin20°.sin30°.sin40°.sin80°
= sin20°2\frac{sin20°}{2} × 22\frac 22sin40°.sin80°
= sin20°4\frac{sin20°}{4}{cos(40° - 80°) - cos(40° + 80°)}
= sin20°4\frac{sin20°}{4}{cos(-40°) - cos120°}
= sin20°4\frac{sin20°}{4}{cos40° + 12\frac 12} [cos(-θ) = cosθ]
= sin20°8\frac{sin20°}{8}(2cos40° + 1)
= 18\frac 18(2sin20°.cos40° + sin20°)
= 18\frac 18{sin(20° + 40°) + sin(20° - 40°) + sin20°}
= 18\frac 18(sin60° - sin20° + sin20°)

316\frac{\sqrt3}{16} = R.H.S

cos3A.cos3A + sin3A.sin3A = cos32A

Here,
cos3A.cos3A + sin3A.sin3A = cos32A

Taking L.H.S,
= cos3A.cos3A + sin3A.sin3A
= 4cos3A.cos3A + 4sin3A.sin3A4\frac{4cos^{3}A.cos3A \text{ + }4sin^{3}A.sin3A}{4}
= 14\frac 14 {(cos3A + 3cosA)cos3A + (3sinA - sin3A)sin3A}
= 14\frac 14 {cos23A + 3cosA.cos3A + 3sinA.sin3A - sin23A}
= 14\frac 14 {cos2.3A + 3(cosA.cos3A + sinA.sin3A)}
= 14\frac 14 {cos6A + 3cos(-2A)}
= 14\frac 14 {cos6A + 3cos2A} [cos(-θ) = cosθ]
= 14\frac 14 {cos6A + 4cos32A - cos3.2A}
= 14\frac 14 (cos6A + 4cos32A - cos6A)

∴ cos32A = R.H.S

cos2A + sin2A.cos2B = cos2B + sin2B.cos2A

Here,
cos2A + sin2A.cos2B = cos2B + sin2B.cos2A

Taking L.H.S,
= cos2A + sin2A(1 - 2sin2B)
= cos2A + sin2A - 2sin2A.sin2B
= 1 - 2sin2A.sin2B
= cos2B + sin2B - 2sin2A.sin2B
= cos2B + sin2B(1 - 2sin2A)

∴ cos2B + sin2B.cos2A = R.H.S

If 1sinA\frac{1}{sinA} + 1cosA\frac{1}{cosA} = 1sinB\frac{1}{sinB} + 1cosB\frac{1}{cosB}, prove that: cot(A + B2)\left(\frac{\text{A + B}}{2}\right) = tanA.tanB

Given: 1sinA\frac{1}{sinA} + 1cosA\frac{1}{cosA} = 1sinB\frac{1}{sinB} + 1cosB\frac{1}{cosB}
To prove: cot(A + B2)\left(\frac{\text{A + B}}{2}\right) = tanA.tanB

Now, 1sinA\frac{1}{sinA} - 1cosB\frac{1}{cosB} = 1sinB\frac{1}{sinB} - 1cosA\frac{1}{cosA} or, cosB - sinAsinA.cosB\frac{\text{cosB - sinA}}{sinA.cosB} = cosA - sinBsinB.cosA\frac{\text{cosA - sinB}}{sinB.cosA}
or, cosA.cosB.sinB - sinA.sinB.cosA = sinA.cosA.cosB - sinA.sinB.cosB
Dividing both sides by cosA.cosB.cosC, we get,
or, sinBcosC\frac{sinB}{cosC} - tanA.tanB.cosAcosC\frac{tanA.tanB.cosA}{cosC} = tanA.cosAcosC\frac{tanA.cosA}{cosC} - tanA.tanB.cosBcosC\frac{tanA.tanB.cosB}{cosC}
or, sinB - tanA.tanB.cosA = tanA.cosA - tanA.tanB.cosB
or, sinB - tanA.cosA = tanA.tanB(cosA - cosB)
or, sinB - sinA.cosAcosA\frac{sinA.cosA}{cosA} = tanA.tanB(cosA - cosB)
or, sinB - sinAcosA - cosB\frac{\text{sinB - sinA}}{\text{cosA - cosB}} = tanA.tanB

or, 2sin(B - A2)cos(B + A2)2sin(B - A2)sin(B + A2)\frac{2sin\left(\frac{\text{B - A}}{2}\right)cos\left(\frac{\text{B + A}}{2}\right)}{2sin\left(\frac{\text{B - A}}{2}\right)sin\left(\frac{\text{B + A}}{2}\right)} = tanA.tanB
or, cot(B + A2)\left(\frac{\text{B + A}}{2}\right) = tanA.tanB
∴ cot(A + B2)\left(\frac{\text{A + B}}{2}\right) = tanA.tanB

8(1 + sinπ8)(1 + sin3π8)(1 - sin5π8)(1 - sin7π8)\left(\text{1 + }sin\frac{\pi}{8}\right)\left(\text{1 + }sin\frac{3\pi}{8}\right)\left(\text{1 - }sin\frac{5\pi}{8}\right)\left(\text{1 - }sin\frac{7\pi}{8}\right) = 1

Here, 8(1 + sinπ8)(1 + sin3π8)(1 - sin5π8)(1 - sin7π8)\left(\text{1 + }sin\frac{\pi}{8}\right)\left(\text{1 + }sin\frac{3\pi}{8}\right)\left(\text{1 - }sin\frac{5\pi}{8}\right)\left(\text{1 - }sin\frac{7\pi}{8}\right) = 1

Taking L.H.S, = 8(1 + sinπ8)(1 + sin3π8)(1 - sin5π8)(1 - sin7π8)\left(\text{1 + }sin\frac{\pi}{8}\right)\left(\text{1 + }sin\frac{3\pi}{8}\right)\left(\text{1 - }sin\frac{5\pi}{8}\right)\left(\text{1 - }sin\frac{7\pi}{8}\right)
= 8(1 + sinπ8){(1 - sin(π - π8)}(1 + sin3π8){(1 - sin(π - 3π8)}\left(\text{1 + }sin\frac{\pi}{8}\right)\{(\text{1 - }sin\left(\pi\text{ - }\frac{\pi}{8}\right)\}\left(\text{1 + }sin\frac{3\pi}{8}\right)\{(\text{1 - }sin\left(\pi\text{ - }\frac{3\pi}{8}\right)\}
= 8(1 + sinπ8)(1 - sinπ8)(1 + sin3π8)(1 - sin3π8)\left(\text{1 + }sin\frac{\pi}{8}\right)\left(\text{1 - }sin\frac{\pi}{8}\right)\left(\text{1 + }sin\frac{3\pi}{8}\right)\left(\text{1 - }sin\frac{3\pi}{8}\right)
= 8(1 - sin2π8)(1 - sin23π8)\left(\text{1 - }sin^{2}\frac{\pi}{8}\right)\left(\text{1 - }sin^{2}\frac{3\pi}{8}\right)
= 8(1 - sin23π8 - sin2π8 + sin23π8sin2π8)\left(\text{1 - }sin^{2}\frac{3\pi}{8}\text{ - }sin^{2}\frac{\pi}{8}\text{ + }sin^{2}\frac{3\pi}{8}sin^{2}\frac{\pi}{8}\right)
= 8{1 - cos2(π2 - π8) - sin2π8 + cos2(π2 - π8)sin2π8}\{\text{1 - }cos^{2}\left(\frac{\pi}{2}\text{ - }\frac{\pi}{8}\right)\text{ - }sin^{2}\frac{\pi}{8}\text{ + }cos^{2}\left(\frac{\pi}{2}\text{ - }\frac{\pi}{8}\right)sin^{2}\frac{\pi}{8}\}
= 8{1 - (cos2π8 + sin2π8) + cos2π8sin2π8}\{1 \text{ - } \left(cos^{2}\frac \pi8 \text{ + }sin^{2}\frac \pi8\right)\text{ + }cos^{2}\frac{\pi}{8}sin^{2}\frac \pi8\}
= 8{1 - 1 + 14(2sinπ8cosπ8)2}\{\text{1 - 1 + }\frac 14\left(2sin\frac{\pi}{8}cos\frac \pi8\right)^2\}
= 84(sin2.π8)2\frac 84\left(sin2 . \frac \pi8\right)^2
= 2(sinπ4)2\left(sin\frac \pi4\right)^2
= 2(12)2\left(\frac{1}{\sqrt2}\right)^2
= 22\frac 22
= 1

8cos10°.cos50°.cos70° = 3\sqrt3

Here,
8cos10°.cos50°.cos70° = 3\sqrt3

Taking L.H.S,
= 4cos10°.2cos50°cos70°
= 4cos10°{cos(50° + 70°) + cos(50° - 70°)}
= 4cos10°(cos120° + cos20°) [cos(-θ) = cosθ]
= 4cos10°(-12\frac{1}{2} + cos20°)
= 2(-cos10° + 2cos10°cos20°)
= 2{-cos10° + cos(10° + 20°) + cos(10° - 20°)}
= 2{-cos10° + cos30° + cos(-10)°}
= 2(-cos10° + 32\frac{\sqrt3}{2} + cos10°)
= 3\sqrt3

4cosA.cos(60° - A).cos(60° + A) = cos3A

Here,
4cosA.cos(60° - A).cos(60° + A) = cos3A

Taking L.H.S,
= 2cosA.2cos(60° - A).cos(60° + A)
= 2cosA{cos(60° - A + 60° + A) + cos(60° - A - 60° - A)}
= 2cosA{cos120° + cos(-2A)}
= 2(-cosA2\frac{cosA}{2} + cosA.cos2A) [cos(-θ) = cosθ]
= -cosA + 2xosA.cos2A
= -cosA + cos(A + 2A) + cos(A - 2A)
= -cosA + cos3A + cosA

∴ cos3A = R.H.S

16sin20°.sin40°.sin60°.sin80° = 3

Here,
16sin20°.sin40°.sin60°.sin80° = 3

Taking L.H.S,
= 16sin20°.sin40°.sin60°.sin80°
= 16sin20°.sin40°.32\frac{\sqrt3}{2}.sin80°
= 43\sqrt3.sin20°.2sin80°sin40°
= 43\sqrt3.sin20°{cos(80° - 40°) - cos(80° + 40°)}
= 43\sqrt3.sin20°(cos40° - cos120°)
= 43\sqrt3.sin20°(cos40° + 12\frac 12)
= 23\sqrt3.sin20°(2cos40° + 1)
= 23\sqrt3.(2sin20°.cos40° + sin20°)
= 23\sqrt3.{sin(20° + 40°) + sin(20° - 40°) + sin20°}
= 23\sqrt3.{sin60° - sin20° + sin20°}
= 23.32\sqrt3.\frac{\sqrt3}{2}
= 3

If x + y = 45°, prove that: (cotx + 1)(coty + 1)cotx.coty\frac{\text{(cotx + 1)(coty + 1)}}{cotx.coty} = 2

Given: x + y = 45°
To prove: (cotx + 1)(coty + 1)cotx.coty\frac{\text{(cotx + 1)(coty + 1)}}{cotx.coty} = 2

Now, x + y = 45° Taking 'cot' ratio on both side, we get,
or, cot(x + y) = cot45°
or, cotx.coty - 1cotx+coty\frac{\text{cotx.coty - 1}}{cotx + coty} = 1
or, cotx.coty = cotx + coty + 1
Adding 'cotx.coty' on both side, we get,
or, 2cotx.coty = cotx + coty + 1 + cotx.coty
or, 2cotx.coty = 1(cotx + 1) + coty(1 + cotx)
or, 2cotx.coty = (cotx + 1)(1 + coty)
(cotx + 1)(coty + 1)cotx.coty\frac{\text{(cotx + 1)(coty + 1)}}{cotx.coty} = 2

sin2α - sin2βsinα.cosα - sinβ.cosβ\frac{sin^{2}α\text{ - }sin^{2}β}{\text{sinα.cosα - sinβ.cosβ}} = tan(α + β)

Here,
sin2α - sin2βsinα.cosα - sinβ.cosβ\frac{sin^{2}α\text{ - }sin^{2}β}{\text{sinα.cosα - sinβ.cosβ}} = tan(α + β)

Taking R.H.S,
= tan(α + β)
= sin(α + β)cos(α + β)\frac{\text{sin(α + β)}}{\text{cos(α + β)}}
= sinαcosβ + cosαsinβcosαcosβ - sinαsinβ\frac{\text{sinαcosβ + cosαsinβ}}{\text{cosαcosβ - sinαsinβ}} × sinαcosβ - cosαsinβsinαcosβ - cosαsinβ\frac{\text{sinαcosβ - cosαsinβ}}{\text{sinαcosβ - cosαsinβ}} = sin2αcos2β - cos2αsin2βsinα.cosα.cos2β - cos2α.sinβ.cosβ - sin2α.sinβ.cosβ + sinα.cosα.sin2β\frac{sin^{2}αcos^{2}β \text{ - }cos^{2}αsin^{2}β}{sinα.cosα.cos^{2}β \text{ - }cos^{2}α.sinβ.cosβ \text{ - }sin^{2}α.sinβ.cosβ \text{ + }sinα.cosα.sin^{2}β}
= sin2α(1 - sin2β) - (1 - sin2α)sin2βsinα.cosα(cos2β + sin2β) - sinβ.cosβ(cos2α + sin2α)\frac{sin^{2}α(\text{1 - }sin^{2}β) \text{ - }(\text{1 - }sin^{2}α)sin^{2}β}{sinα.cosα(cos^{2}β \text{ + }sin^{2}β) \text{ - } sinβ.cosβ(cos^{2}α \text{ + } sin^{2}α)}
= sin2α - sin2αsin2β - sin2β + sin2αsin2βsinα.cosα.1 - sinβ.cosβ.1\frac{sin^{2}α \text{ - }sin^{2}αsin^{2}β \text{ - }sin^{2}β \text{ + } sin^{2}αsin^{2}β}{\text{sinα.cosα.1 - sinβ.cosβ.1}}

sin2α - sin2βsinα.cosα - sinβ.cosβ\frac{sin^{2}α\text{ - }sin^{2}β}{\text{sinα.cosα - sinβ.cosβ}} = L.H.S

sinθ.sin(60° - θ).sin(60° + θ) = 14\frac 14sin3θ

Here,
sinθ.sin(60° - θ).sin(60° + θ) = 14\frac 14sin3θ

Taking L.H.S,
= sinθ.sin(60° - θ).sin(60° + θ)
= 12\frac 12sinθ.2sin(60° - θ).sin(60° + θ)
= 12\frac 12sinθ {cos(60° - θ - 60° - θ) - cos(60° - θ + 60° - θ)}
= 12\frac 12sinθ {cos(-2θ) - cos120°}
= 12\frac 12sinθ {cos2θ + 12\frac 12}
= 14\frac 14 (2sinθ.cos2θ + sinθ)
= 14\frac 14 {sin(θ + 2θ) + sin(θ - 2θ) + sinθ}
= 14\frac 14 (sin3θ - sinθ + sinθ)

14\frac 14sin3θ = R.H.S

3\sqrt3 cosec20° - sec20° = 4

Here,
3\sqrt3 cosec20° - sec20° = 4

Taking L.H.S,
= 3\sqrt3 cosec20° - sec20°
= 3sin20°\frac{\sqrt3}{sin20°} - 1cos20°\frac{1}{cos20°}
= 3cos20° - sin20°sin20°.cos20°\frac{\sqrt3 cos20° \text{ - sin20°}}{sin20°.cos20°}
= cot30°.cos20° - sin20°sin20°.cos20°\frac{cot30°.cos20° \text{ - sin20°}}{sin20°.cos20°}
= cos30°.cos20° - sin30°sin20°sin30°.sin20°.cos20°\frac{cos30°.cos20° \text{ - sin30°sin20°}}{sin30°.sin20°.cos20°}
= 2×cos(30° + 20°)sin30°.2sin20°.cos20°\frac{2 \times \text{cos(30° + 20°)}}{sin30°.2sin20°.cos20°}
= 2cos50°sin30°.sin40°\frac{2cos50°}{sin30°.sin40°}
= 2cos(90° - 40°)12sin40°\frac{\text{2cos(90° - 40°)}}{\frac 12 sin40°}

= 4sin40°sin40°\frac{4sin40°}{sin40°}

∴ 4 = R.H.S

sin4x = 18\frac 18 (3 - 4cos2x + cos4x)

Here,
sin4x = 18\frac 18 (3 - 4cos2x + cos4x)

Taking L.H.S,
= 18\frac 18 (3 - 4cos2x + cos4x)
= 18\frac 18 {3 - 4(1 - 2sin2x) + 1 - 2 sin22x}
= 18\frac 18 (3 - 4 + 8sin2x + 1 - 2 sin22x)
= 18\frac 18 (-1 + 8sin2x + 1 - 2sin22x)
= 28\frac 28 (4sin2x - sin22x)
= 14\frac 14 {4sin2x - (2sinx.cosx)2}
= 14\frac 14 (4sin2x - 4sin2x.cos2x)
= 44\frac 44 sin2x (1 - cos2x)
= sin2x.sin2x

∴ sin4x = R.H.S

If 2tanα = 3tanβ, prove that: tan(α - β) = sin2β5 - cos2β\frac{sin2β}{\text{5 - cos2β}}

Given: 2tanα = 3tanβ
tanα = 3tanβ2\frac{3tanβ}{2} ---- (A)
To prove: tan(α - β) = sin2β5 - cos2β\frac{sin2β}{\text{5 - cos2β}}

Taking L.H.S,
= tan(α - β)
= tanα - tanβ1 + tanα.tanβ\frac{\text{tanα - tanβ}}{\text{1 + tanα.tanβ}}
= 3tanβ2 - tanβ1 + 3tanβ2tanβ\frac{\frac{3tanβ}{2} \text{ - tanβ}}{\text{1 + }\frac{3tanβ}{2}tanβ} [From (A)]
= 3tanβ - 2tanβ2\frac{\text{3tanβ - 2tanβ}}{2} × 22 + 3tan2β\frac{2}{\text{2 + }3tan^{2}β}
= tanβ2 + 3tan2β\frac{tanβ}{\text{2 + }3tan^{2}β}
= sinβcosβ2 + 3sin2βcos2β\frac{\frac{sinβ}{cosβ}}{\text{2 + }\frac{3sin^{2}β}{cos^{2}β}}
= sinβcosβ\frac{sinβ}{cosβ} × cos2β2cos2β + 3sin2β\frac{cos^2{β}}{2cos^{2}β \text{ + }3sin^{2}β}
= sinβ.cosβ2cos2β + 3sin2β\frac{sinβ.cosβ}{2cos^{2}β \text{ + }3sin^{2}β}
= 2sinβ.cosβ2.2cos2β + 3.2sin2β\frac{2sinβ.cosβ}{2.2cos^{2}β \text{ + }3.2sin^{2}β}
= 2sinβ.cosβ2(1 + cos2β) + 3(1 - cos2β)\frac{2sinβ.cosβ}{\text{2(1 + cos2β) + 3(1 - cos2β)}}
= sin2β2 + 2cos2β + 3 - 3cos2β\frac{sin2β}{\text{2 + 2cos2β + 3 - 3cos2β}}

sin2β5 - cos2β\frac{sin2β}{\text{5 - cos2β}} = R.H.S