Multiple Angles

Prove that: sin4B + cos4B = 1 - 12\frac 12sin22B

Here,
sin4B + cos4B = 1 - 12\frac 12sin22B

Taking L.H.S,
= sin4B + cos4B
= (sin2B)2 + (cos2B)2
= (sin2B + cos2B)2 - 2sin2B.cos2B
= 1 - 12\frac 12(2sinB.cosB)2
= 1 - 12\frac 12(sin2B)2
= 1 - 12\frac 12sin22B

Prove that: cos4A + sin4A = 1 - 12\frac 12sin22A

Here,
cos4A + sin4A = 1 - 12\frac 12sin22A

Taking L.H.S,
= cos4A + sin4A
= (cos2A)2 + (sin2A)2
= (cos2A + sin2A)2 - 2sin2A.cos2A
= 1 - 12\frac 12(2sinA.cosA)2
= 1 - 12\frac 12(sin2A)2
= 1 - 12\frac 12sin22A

Prove that: sinθ + sin2θ1 + cosθ + cos2θ\frac{\text{sinθ + sin2θ}}{\text{1 + cosθ + cos2θ}} = tanθ

Here,
sinθ + sin2θ1 + cosθ + cos2θ\frac{\text{sinθ + sin2θ}}{\text{1 + cosθ + cos2θ}} = tanθ

Taking L.H.S,
= sinθ + sin2θ1 + cosθ + cos2θ\frac{\text{sinθ + sin2θ}}{\text{1 + cosθ + cos2θ}}
= sinθ + 2sinθcosθ1 + cosθ + 2cos2θ - 1\frac{\text{sinθ + 2sinθcosθ}}{\text{1 + cosθ + }2cos^2θ\text{ - 1}}
= sinθ (1 + 2cosθ)cosθ(1+2cosθ)\frac{\text{sinθ (1 + 2cosθ)}}{cosθ (1 + 2cosθ)}
∴ tanθ = R.H.S

If sinA = 12\frac{1}{2}, find the value of sin3A.

Here,
sinA = 12\frac{1}{2}

Now,
sin3A = 3sinA - 4sin3A = 32\frac{3}{2} - 4(12)3\left(\frac{1}{2}\right)^3
= 32\frac{3}{2} - 48\frac{4}{8}
= 32\frac{3}{2} - 12\frac{1}{2}
= 1

If sinθ = 35\frac{3}{5}, find the value of cos2θ.

Here,
sinθ = 35\frac{3}{5}

Now,
cos2θ = 1 - 2sin2θ = 1 - 2(35)2\left(\frac{3}{5}\right)^2
= 1 - 1825\frac{18}{25}
= 725\frac{7}{25}

Prove that: cosec2θ - cot2θ = tanθ

Here, cosec2θ - cot2θ = tanθ

Taking L.H.S,
= cosec2θ - cot2θ
= 1sin2θ\frac{1}{sin2θ} - cos2θsin2θ\frac{cos2θ}{sin2θ}
= 1 - cos2θsin2θ\frac{\text{1 - cos2θ}}{sin2θ}
= 1 - (2cos2θ - 1)sin2θ\frac{\text{1 - }(2cos^2θ \text{ - 1})}{sin2θ}
= 2 - 2cos2θsin2θ\frac{\text{2 - }2cos^2θ}{sin2θ}
= 2(1 - cos2θ)2sinθcosθ\frac{\text{2(1 - }cos^2θ)}{2sinθcosθ}
= sinθsinθcosθ\frac{sinθ}{sinθcosθ}
∴ tanθ = R.H.S

If cosθ = 45\frac{4}{5}, find the value of cos3θ.

Here,
cosθ = 45\frac{4}{5}

Now,
cos3θ = 4cos3θ - 3cosθ = 4(45)3\left(\frac{4}{5}\right)^3 - 3(45)\left(\frac{4}{5}\right)
= 4(64125)\left(\frac{64}{125}\right) - (125)\left(\frac{12}{5}\right)
= -44125\frac{44}{125}

Prove that: sin2A1 + cos2A\frac{sin2A}{\text{1 + cos2A}} = tanA

Here,
sin2A1 + cos2A\frac{sin2A}{\text{1 + cos2A}} = tanA

Taking L.H.S,
= sin2A1 + cos2A\frac{sin2A}{\text{1 + cos2A}}
= 2sinAcosA1 + 2cos2A - 1\frac{2sinAcosA}{\text{1 + }2cos^2A \text{ - 1}}
∴ tanA = R.H.S

If sinA = 34\frac{3}{4} find the value of cos2A.

Here,
sinA = 34\frac{3}{4}

Now,
cos2A = 2cos2A - 1 = 2(1 - sin2A) - 1
= 2(1 - 916)\left(\text{1 - }\frac{9}{16}\right)
= 14 - 1616\frac{\text{14 - 16}}{16}
= -18\frac{1}{8}

Prove that: sinA.cos2A = 14\frac{1}{4}sin4A.secA

Here,
sinA.cos2A = 14\frac{1}{4}sin4A.secA

Taking R.H.S,
= 14\frac{1}{4}sin4A.secA
= sin2.2A4cosA\frac{sin2.2A}{4cosA}
= 2sin2Acos2A4cosA\frac{2sin2Acos2A}{4cosA}
= 2sinAcosAcos2A2cosA\frac{\cancel{2}sinA\cancel{cosA}cos2A}{\cancel{2cosA}}
∴ sinA.cos2A = L.H.S

2sin2(45 - A) = 1 - sin2A.

Here,
2sin2(45 - A) = 1 - sin2A

Taking L.H.S,
= 2sin2(45 - A)
= 1 - cos2(45 - A)
= 1 - cos(90 - 2A)
∴ 1 - sin2A = R.H.S