Prove that: sin4B + cos4B = 1 - 21sin22B
Here,
sin4B + cos4B = 1 - 21sin22B
Taking L.H.S,
= sin
4B + cos
4B
= (sin
2B)
2 + (cos
2B)
2
= (sin
2B + cos
2B)
2 - 2sin
2B.cos
2B
= 1 -
21(2sinB.cosB)
2
= 1 -
21(sin2B)
2
= 1 -
21sin
22B
Prove that: cos4A + sin4A = 1 - 21sin22A
Here,
cos4A + sin4A = 1 - 21sin22A
Taking L.H.S,
= cos
4A + sin
4A
= (cos
2A)
2 + (sin
2A)
2
= (cos
2A + sin
2A)
2 - 2sin
2A.cos
2A
= 1 -
21(2sinA.cosA)
2
= 1 -
21(sin2A)
2
= 1 -
21sin
22A
Prove that:
1 + cosθ + cos2θsinθ + sin2θ = tanθ
Here,
1 + cosθ + cos2θsinθ + sin2θ = tanθ
Taking L.H.S,
=
1 + cosθ + cos2θsinθ + sin2θ
=
1 + cosθ + 2cos2θ - 1sinθ + 2sinθcosθ
=
cosθ(1+2cosθ)sinθ (1 + 2cosθ)
∴ tanθ = R.H.S
If sinA = 21, find the value of sin3A.
Here,
sinA = 21
Now,
sin3A = 3sinA - 4sin
3A
= 23 - 4(21)3
= 23 - 84
= 23 - 21
= 1
If sinθ = 53, find the value of cos2θ.
Here,
sinθ = 53
Now,
cos2θ = 1 - 2sin
2θ
= 1 - 2(53)2
= 1 - 2518
= 257
Prove that: cosec2θ - cot2θ = tanθ
Here,
cosec2θ - cot2θ = tanθ
Taking L.H.S,
= cosec2θ - cot2θ
= sin2θ1 - sin2θcos2θ
= sin2θ1 - cos2θ
= sin2θ1 - (2cos2θ - 1)
= sin2θ2 - 2cos2θ
= 2sinθcosθ2(1 - cos2θ)
= sinθcosθsinθ
∴ tanθ = R.H.S
If cosθ = 54, find the value of cos3θ.
Here,
cosθ = 54
Now,
cos3θ = 4cos
3θ - 3cosθ
= 4(54)3 - 3(54)
= 4(12564) - (512)
= -12544
Prove that: 1 + cos2Asin2A = tanA
Here,
1 + cos2Asin2A = tanA
Taking L.H.S,
=
1 + cos2Asin2A
=
1 + 2cos2A - 12sinAcosA
∴ tanA = R.H.S
If sinA = 43 find the value of cos2A.
Here,
sinA = 43
Now,
cos2A = 2cos2A - 1
= 2(1 - sin2A) - 1
= 2(1 - 169)
= 1614 - 16
= -81
Prove that: sinA.cos2A = 41sin4A.secA
Here,
sinA.cos2A = 41sin4A.secA
Taking R.H.S,
=
41sin4A.secA
=
4cosAsin2.2A
=
4cosA2sin2Acos2A
=
2cosA2sinAcosAcos2A
∴ sinA.cos2A = L.H.S
2sin2(45 - A) = 1 - sin2A.
Here,
2sin2(45 - A) = 1 - sin2A
Taking L.H.S,
= 2sin
2(45 - A)
= 1 - cos2(45 - A)
= 1 - cos(90 - 2A)
∴ 1 - sin2A = R.H.S