2cos70°.cos20° = cos50°
Here,
2cos70°.cos20° = cos50°
Taking L.H.S,
= 2cos70°.cos20°
= cos(70° + 20°) + cos(70° - 20°)
= cos90° + cos50°
= 0 + cos50°
∴ cos50° = R.H.S
cos10° - cos80°sin80° + sin10° = cot35°
Here,
cos10° - cos80°sin80° + sin10° = cot35°
Taking L.H.S,
= cos10° - cos80°sin80° + sin10°
= 2sin(280° + 10°)sin(280° - 10°)2sin(280° + 10°)cos(280° - 10°)
= sin35°cos35°
∴ cot35° = R.H.S
sin5A - sinAcosA - cos5A = tan3A
Here,
sin5A - sinAcosA - cos5A = tan3A
Taking L.H.S,
= sin5A - sinAcosA - cos5A
= 2cos(25A + A)sin(25A - A)2sin(25A + A)sin(25A - A)
= cos3Asin3A
∴ tan3A = R.H.S
sin60° - cos50°cos40° - sin30° = tan50°
Here,
sin60° - cos50°cos40° - sin30° = tan50°
Taking L.H.S,
= sin60° - sin(90° - 50°)cos40° - cos(90° - 30°)
= sin60° - sin40°cos40° - cos60°
= 2cos(260° + 40°)sin(260° - 40°)2sin(260° + 40°)sin(260° - 40°)
= cos50°sin50°
∴ tan50° = R.H.S
cos20° + sin20°cos20° - sin20° = tan25°
Here,
cos20° + sin20°cos20° - sin20° = tan25°
Taking L.H.S,
= cos20° + cos(90° - 20°)cos20° - cos(90° - 20°)
= cos20° + cos70°cos20° - cos70°
= 2cos(220° + 70°)cos(220° - 70°)2sin(270° + 20°)sin(270° - 20°)
= cos45°.cos(−25)°sin45°.sin25°
= cos45°.cos25°sin45°.sin25° [cos(-θ) = cosθ]
= cos25°sin25° [sin45° = cos45° = 21]
∴ tan25° = R.H.S
cos20° + cos140° + cos100° = 0
Here,
cos20° + cos140° + cos100° = 0
Taking L.H.S,
= cos20° + cos140° + cos100°
= 2cos(220° + 140°)cos(220° - 140°) + cos100°
= 2cos80°.cos(-60)° + cos100° [cos(-θ) = cosθ]
= 2cos80°cos60° + cos100°
= 22cos80° + cos100°
= 2cos(280° + 100°)cos(280° - 100°)
= 2cos90°.cos(-10)°
∴ 0 = R.H.S
21(cos2θ - cos8θ) = sin5θ.sin3θ
Here,
21(cos2θ - cos8θ) = sin5θ.sin3θ
Taking L.H.S,
= 21(cos2θ - cos8θ)
= 21×2sin(28θ - 2θ)sin(28θ + 2θ)
∴ sin3θ.sin5θ = R.H.S
2sin50°.sin40° = cos10°
Here,
2sin50°.sin40° = cos10°
Taking L.H.S,
= 2sin50°.sin40°
= cos(50 - 40°) - cos(50° + 40°)
= cos10° - 0
∴ cos10° = R.H.S
cos105°.cos15° = -41
Here,
cos105°.cos15° = -
41
Taking L.H.S,
= 22 × cos105°.cos15°
= 2cos(105° + 15°) + cos(105° - 15°)
= 2cos120° + cos90°
= 2cos120°
∴-
41 = R.H.S
Find the value of : sin75° - sin105°
Here,
sin75° - sin105°
Taking L.H.S,
= 2cos(275° + 105°)sin(275° - 105°)
= 2cos90° × sin(-15)°
= 2 × 0 × sin(-15)°
= 0
cos40°+sin40°cos40° - sin40° = tan5°
Here,
cos40°+sin40°cos40° - sin40° = tan5°
Taking L.H.S,
= cos40° + cos(90° - 40°)cos40° - cos(90° - 40°)
= cos40° + cos50°cos40° - cos50°
= 2cos(240° + 50°)cos(240° - 50°)2sin(250° - 40°)sin(250° + 40°)
= cos45°.cos(−5)°sin5°.sin45°
= cos5°sin5° [cos(-θ) = cosθ, sin45° = cos45° = 21]
∴ tan5° = R.H.S
cos40° + sin40° = 2cos5°
Here,
cos40° + sin40° =
2cos5°
Taking L.H.S,
= cos40° + cos(90° - 40°)
= cos40° + cos50°
= 2cos(240 + 50).cos(240 - 50)
= 2cos45°.cos(-5)°
= 22cos5° [cos(-θ) cosθ]
= 22×2cos5°
∴
2cos5° = R.H.S
sinA - sinBsinA + sinB = tan2A + B.cot2A - B
Here,
sinA - sinBsinA + sinB = tan
2A + B.cot
2A - B
Taking L.H.S,
= 2sin(2A - B)cos(2A + B)2sin(2A + B)cos(2A - B)
∴ tan
2A + B.cot
2A - B = R.H.S