Transformation of Trigonometric Formula

2cos70°.cos20° = cos50°

Here,
2cos70°.cos20° = cos50°

Taking L.H.S,
= 2cos70°.cos20°
= cos(70° + 20°) + cos(70° - 20°)
= cos90° + cos50°
= 0 + cos50°
∴ cos50° = R.H.S

sin80° + sin10°cos10° - cos80°\frac{\text{sin80° + sin10°}}{\text{cos10° - cos80°}} = cot35°

Here,
sin80° + sin10°cos10° - cos80°\frac{\text{sin80° + sin10°}}{\text{cos10° - cos80°}} = cot35°

Taking L.H.S,
= sin80° + sin10°cos10° - cos80°\frac{\text{sin80° + sin10°}}{\text{cos10° - cos80°}}
= 2sin(80° + 10°2)cos(80° - 10°2)2sin(80° + 10°2)sin(80° - 10°2)\frac{2sin\left(\frac{\text{80° + 10°}}{2}\right)cos\left(\frac{\text{80° - 10°}}{2}\right)}{2sin\left(\frac{\text{80° + 10°}}{2}\right)sin\left(\frac{\text{80° - 10°}}{2}\right)}
= cos35°sin35°\frac{cos35°}{sin35°}
∴ cot35° = R.H.S

cosA - cos5Asin5A - sinA\frac{\text{cosA - cos5A}}{\text{sin5A - sinA}} = tan3A

Here,
cosA - cos5Asin5A - sinA\frac{\text{cosA - cos5A}}{\text{sin5A - sinA}} = tan3A

Taking L.H.S,
= cosA - cos5Asin5A - sinA\frac{\text{cosA - cos5A}}{\text{sin5A - sinA}}
= 2sin(5A + A2)sin(5A - A2)2cos(5A + A2)sin(5A - A2)\frac{2sin\left(\frac{\text{5A + A}}{2}\right)sin\left(\frac{\text{5A - A}}{2}\right)}{2cos\left(\frac{\text{5A + A}}{2}\right)sin\left(\frac{\text{5A - A}}{2}\right)}
= sin3Acos3A\frac{sin3A}{cos3A}
∴ tan3A = R.H.S

cos40° - sin30°sin60° - cos50°\frac{\text{cos40° - sin30°}}{\text{sin60° - cos50°}} = tan50°

Here,
cos40° - sin30°sin60° - cos50°\frac{\text{cos40° - sin30°}}{\text{sin60° - cos50°}} = tan50°

Taking L.H.S,
= cos40° - cos(90° - 30°)sin60° - sin(90° - 50°)\frac{\text{cos40° - cos(90° - 30°)}}{\text{sin60° - sin(90° - 50°)}}
= cos40° - cos60°sin60° - sin40°\frac{\text{cos40° - cos60°}}{\text{sin60° - sin40°}}

= 2sin(60° + 40°2)sin(60° - 40°2)2cos(60° + 40°2)sin(60° - 40°2)\frac{2sin\left(\frac{\text{60° + 40°}}{2}\right)sin\left(\frac{\text{60° - 40°}}{2}\right)}{2cos\left(\frac{\text{60° + 40°}}{2}\right)sin\left(\frac{\text{60° - 40°}}{2}\right)}
= sin50°cos50°\frac{sin50°}{cos50°}
∴ tan50° = R.H.S

cos20° - sin20°cos20° + sin20°\frac{\text{cos20° - sin20°}}{\text{cos20° + sin20°}} = tan25°

Here,
cos20° - sin20°cos20° + sin20°\frac{\text{cos20° - sin20°}}{\text{cos20° + sin20°}} = tan25°

Taking L.H.S,
= cos20° - cos(90° - 20°)cos20° + cos(90° - 20°)\frac{\text{cos20° - cos(90° - 20°)}}{\text{cos20° + cos(90° - 20°)}}
= cos20° - cos70°cos20° + cos70°\frac{\text{cos20° - cos70°}}{\text{cos20° + cos70°}}

= 2sin(70° + 20°2)sin(70° - 20°2)2cos(20° + 70°2)cos(20° - 70°2)\frac{2sin\left(\frac{\text{70° + 20°}}{2}\right)sin\left(\frac{\text{70° - 20°}}{2}\right)}{2cos\left(\frac{\text{20° + 70°}}{2}\right)cos\left(\frac{\text{20° - 70°}}{2}\right)}
= sin45°.sin25°cos45°.cos(25)°\frac{sin45°.sin25°}{cos45°.cos(-25)°}
= sin45°.sin25°cos45°.cos25°\frac{sin45°.sin25°}{cos45°.cos25°} [cos(-θ) = cosθ]
= sin25°cos25°\frac{sin25°}{cos25°} [sin45° = cos45° = 12\frac{1}{\sqrt2}]
∴ tan25° = R.H.S

cos20° + cos140° + cos100° = 0

Here,
cos20° + cos140° + cos100° = 0

Taking L.H.S,
= cos20° + cos140° + cos100°
= 2cos(20° + 140°2)\left(\frac{\text{20° + 140°}}{2}\right)cos(20° - 140°2)\left(\frac{\text{20° - 140°}}{2}\right) + cos100°
= 2cos80°.cos(-60)° + cos100° [cos(-θ) = cosθ]
= 2cos80°cos60° + cos100°
= 22\frac 22cos80° + cos100°
= 2cos(80° + 100°2)\left(\frac{\text{80° + 100°}}{2}\right)cos(80° - 100°2)\left(\frac{\text{80° - 100°}}{2}\right)
= 2cos90°.cos(-10)°
∴ 0 = R.H.S

12\frac 12(cos2θ - cos8θ) = sin5θ.sin3θ

Here,
12\frac 12(cos2θ - cos8θ) = sin5θ.sin3θ

Taking L.H.S,
= 12\frac 12(cos2θ - cos8θ)
= 12×2sin(8θ - 2θ2)sin(8θ + 2θ2)\frac 12 \times 2sin\left(\frac{\text{8θ - 2θ}}{2}\right)sin\left(\frac{\text{8θ + 2θ}}{2}\right)

∴ sin3θ.sin5θ = R.H.S

2sin50°.sin40° = cos10°

Here,
2sin50°.sin40° = cos10°

Taking L.H.S,
= 2sin50°.sin40°
= cos(50 - 40°) - cos(50° + 40°)
= cos10° - 0

∴ cos10° = R.H.S

cos105°.cos15° = -14\frac 14

Here,
cos105°.cos15° = -14\frac 14

Taking L.H.S,
= 22\frac 22 × cos105°.cos15°
= cos(105° + 15°) + cos(105° - 15°)2\frac{\text{cos(105° + 15°) + cos(105° - 15°)}}{2}
= cos120° + cos90°2\frac{\text{cos120° + cos90°}}{2}
= cos120°2\frac{cos120°}{2}

∴-14\frac{1}{4} = R.H.S

Find the value of : sin75° - sin105°

Here,
sin75° - sin105°

Taking L.H.S,
= 2cos(75° + 105°2)\left(\frac{\text{75° + 105°}}{2}\right)sin(75° - 105°2)\left(\frac{\text{75° - 105°}}{2}\right)
= 2cos90° × sin(-15)°
= 2 × 0 × sin(-15)°
= 0

cos40° - sin40°cos40°+sin40°\frac{\text{cos40° - sin40°}}{cos40° + sin40°} = tan5°

Here,
cos40° - sin40°cos40°+sin40°\frac{\text{cos40° - sin40°}}{cos40° + sin40°} = tan5°

Taking L.H.S,
= cos40° - cos(90° - 40°)cos40° + cos(90° - 40°)\frac{\text{cos40° - cos(90° - 40°)}}{\text{cos40° + cos(90° - 40°)}}
= cos40° - cos50°cos40° + cos50°\frac{\text{cos40° - cos50°}}{\text{cos40° + cos50°}}

= 2sin(50° - 40°2)sin(50° + 40°2)2cos(40° + 50°2)cos(40° - 50°2)\frac{2sin\left(\frac{\text{50° - 40°}}{2}\right)sin\left(\frac{\text{50° + 40°}}{2}\right)}{2cos\left(\frac{\text{40° + 50°}}{2}\right)cos\left(\frac{\text{40° - 50°}}{2}\right)}
= sin5°.sin45°cos45°.cos(5)°\frac{sin5°.sin45°}{cos45°.cos(-5)°}
= sin5°cos5°\frac{sin5°}{cos5°} [cos(-θ) = cosθ, sin45° = cos45° = 12\frac{1}{\sqrt2}]

∴ tan5° = R.H.S

cos40° + sin40° = 2\sqrt 2cos5°

Here,
cos40° + sin40° = 2\sqrt 2cos5°

Taking L.H.S,
= cos40° + cos(90° - 40°)
= cos40° + cos50°
= 2cos(40 + 502)\left(\frac{\text{40 + 50}}{2}\right).cos(40 - 502)\left(\frac{\text{40 - 50}}{2}\right)
= 2cos45°.cos(-5)°
= 22\frac{2}{\sqrt2}cos5° [cos(-θ) cosθ]
= 2×22\frac{\sqrt2 \times \sqrt2}{\sqrt2}cos5°

2\sqrt2cos5° = R.H.S

sinA + sinBsinA - sinB\frac{\text{sinA + sinB}}{\text{sinA - sinB}} = tanA + B2\frac{\text{A + B}}{2}.cotA - B2\frac{\text{A - B}}{2}

Here,
sinA + sinBsinA - sinB\frac{\text{sinA + sinB}}{\text{sinA - sinB}} = tanA + B2\frac{\text{A + B}}{2}.cotA - B2\frac{\text{A - B}}{2}

Taking L.H.S,
= 2sin(A + B2)cos(A - B2)2sin(A - B2)cos(A + B2)\frac{2sin\left(\frac{\text{A + B}}{2}\right)cos\left(\frac{\text{A - B}}{2}\right)}{2sin\left(\frac{\text{A - B}}{2}\right)cos\left(\frac{\text{A + B}}{2}\right)}

∴ tanA + B2\frac{\text{A + B}}{2}.cotA - B2\frac{\text{A - B}}{2} = R.H.S