Trigonometric Equations
Solve: 2cosθ = secθ [0° ≤ θ ≤ 90°]
or, cos2θ =
or, cosθ = ±
or, cosθ = cos45° (0° ≤ θ ≤ 90°)
so, θ = 45°
Solve: cosecθ = 2sinθ [0° ≤ θ ≤ 90°]
or, sin2θ =
or, sinθ = ±
or, sinθ = sin45° (0° ≤ θ ≤ 90°)
so, θ = 45°
sin2θ - sinθ + = 0 [0° ≤ θ ≤ 90°]
or, = 0
or, sinθ =
or, sinθ = sin30°, sin(180 - 30°)
so, θ = 30°, 150°
Since, 0° ≤ θ ≤ 90°, θ = 30°
tanθ + 3 = 0 [0° ≤ θ ≤ 90°]
or, tanθ = -
or, tanθ = -tan60°
or, tanθ = tan(180° - 60), tan(360° - 60°)
So, θ = 120°, 300°
Since, 0° ≤ θ ≤ 90°, θ = 120°
4 - 3sec2θ = 0 [0° ≤ θ ≤ 90°]
or, 4 - = 0
or, 4cos2θ - 3 = 0
or, cos2θ =
or, cosθ = ±
Taking positive sign,
or, cosθ = cos30°, cos(360° - 30°)
So, θ = 30°, 330°
Taking negative sign,
or, cosθ = -cos30°
or, cosθ = cos(180° - 30°), cos(180° + 30°)
So, θ = 150°, 210°
1 - tan2θ = -2 [0° ≤ θ ≤ 90°]
or, tanθ = ±
Taking positive sign,
or, tanθ = tan60°, tan(180° + 60°)
So, θ = 60°, 240°
Taking negative sign,
or, tanθ = -tan60°
or, tanθ = tan(180° - 60°), tan(360° - 60°)
So, θ = 120°, 300°
tanA + 1 = 0 [0° ≤ θ ≤ 180°]
or, tanA = -tan30°
or, tanA = tan(360° - 30°), tan(180° - 30°)
So, A = 330°, 150°
Since, 0° ≤ θ ≤ 180°, A = 150°
sinx - sin2x = 0 [0° ≤ x ≤ 90°]
or, sinx(1 - 2cosx) = 0
Either,
sinx = 0
or, sinx = sin0°, sin(180° - 0°)
So, x = 0°, 180°
OR,
1 - 2cosx = 0
or, cosx =
or, cosx = cos60°, cos(360° - 60°)
So, x = 60°, 300°
sin2θ + cosθ = 0 [0° ≤ θ ≤ 90°]
or, cosθ(2sinθ + 1) = 0
Either, cosθ = 0
or, cosθ = cos90°, cos(360° - 90°)
So, θ = 90°, 270°
OR, 2sinθ + 1 = 0
or, 2sinθ = -1
or, sinθ = -
0r, sinθ = -sin30°
or, sinθ = sin(180° + 30°), sin(360° - 30°)
So, θ = 210°, 330°
3tanθ - = 0 [0° ≤ θ ≤ 90°]
or, tanθ =
or, tanθ = tan30°, tan(180° + 30°)
So, θ = 30°, 210°
Since, 0° ≤ θ ≤ 90°, θ = 30°
3secθ = 4cosθ [0° ≤ θ ≤ 90°]
or, cos2θ =
or, cosθ =
or, cosθ = cos30°, cos(360° - 30°)
So, θ = 30°, 330°
Since, 0° ≤ θ ≤ 90°, θ = 30°
tanθ - 3 = 0 [0° ≤ θ ≤ πc]
or, tanθ =
or, tanθ = tan60°, tan(180° + 60°)
So, θ = 60°, 240°
Since, 0° ≤ θ ≤ πc, θ = 60°
tanθ = cotθ [0° ≤ θ ≤ 90°]
or, tanθ = tan45°, tan(180° + 45°)
So, θ = 45°, 225°
Since, 0° ≤ θ ≤ 90°, θ = 45°
tan2A - 1 = 2 [0° ≤ A ≤ 180°]
or, tanA = ±
Taking positive,
or, tanA = tan60°, tan(180° + 60°)
So, A = 60°, 240°
Taking negative,
or, tanA = -tan60°
or, tanA = tan(180° - 60°), tan(360° - 60°)
So, A = 120°, 300°
secθ + 2 = 0 [0° ≤ θ ≤ 360°]
or, secθ = -
or, cosθ = -
or, cosθ = -cos45°
or, cosθ = cos(180° - 45°), cos(180° + 45°)
So, θ = 135°, 225°
As, 0° ≤ θ ≤ 360°, θ = 135°, 225°
2sin2α - 1 = 0 [0° ≤ α ≤ 180°]
Taking positive,
or, sinα = sin45°, sin(180° - 45°)
So, α = 45°, 135°
Taking negative sign,
or, sinα = -sin45°
or, sinα = sin(180° + 45°), sin(360° - 45°)
So, α = 225°, 315°
If 2sinθ - = 0, find the acute value of θ.
or, sinθ = sin60°, sin(180° - 60°)
So, θ = 60°, 120°
Hence, acute value of θ is 60°
2cos2θ + cosθ = 0 [0° ≤ θ ≤ 180°]
Either, cosθ = 0
or, cosθ = cos90°, cos(360° - 90°)
So, θ = 90°, 270°
OR, 2cosθ + + = 0
or, cosθ = -
or, cosθ = -cos30°
or, cosθ = cos(180° - 30°), cos(180° + 30°)
So, θ = 150°, 210°
2cos2θ - 1 = 0 [0° ≤ θ ≤ 180°]
or, cosθ = ±
Taking positive,
or, cosθ = cos45°, cos(360° - 45°)
So, θ = 45°, 315°
Taking negative,
or, cosθ = -cos45°
or, cosθ = cos(180° + 45°), cos(180° - 45°)
So, θ = 225°, 135°
+ 2 = 0 [0° ≤ B ≤ 180°]
or, cosB = -
or, cosB = -
or, cosB = -
or, cosB = -cos45°
or, cosB = cos(180° - 45°), cos(180° + 45°)
So, B = 135°, 225°
Since, 0° ≤ B ≤ 360°, B = 135°
If sinθ = cosθ, find the acute angled value of 'θ'.
or, sin2θ = cos2θ
or, sin2θ = 1 - sin2θ
or, 2sin2θ = 1
or, sinθ = ±
Taking positive,
or, sinθ = sin45°, sin(180° - 45°)
So, θ = 45°, 135°
Taking negative,
or, sinθ = -sin45°
or, sinθ = sin(180° + 45°), sin(360° - 45°)
So, θ = 225°, 315°
cot2x = 3 [0° ≤ θ ≤ 180°]
Taking positive,
or, tanx = tan30°, tan(180° + 30°)
So, x = 30°, 210°
Taking negative,
tanx = -tan30°
or, tanx = tan(180° - 30°), tan(360° - 30°)
So, x = 150°, 330°