If sin3A = 21(a+a1), prove that sinA = −21(a3+a31)
Given:
sin3A = 21(a+a1) 
To Prove: sinA = −21(a3+a31)
Now, 
sinA = sin33A
= 3sin3A - 4sin33A 
= 3 × 21(a+a1) - 4 ×{21(a+a1)}3 
= 23(a+a1) - 84(a+a1)3 
= 23(a+a1) - 21{a3+a31+3.a.a1(a+a1)} 
= 23(a+a1) - 21(a3+a31)−23(a+a1) 
∴ sinA = 
−21(a3+a31)
 
If cos3B = 21(m+m1), prove that cosB = 21(m3+m31)
Given: cos3B = 21(m+m1) 
To prove: cosB = 21(m3+m31)
Now, 
cosB = cos33B
= 4cos33B - 3cos3B  
= 4 ×{21(m+m1)}3 - 3 × 21(m+m1) 
= 84(m+m1)3 - 23(m+m1) 
= 21{m3+m31+3.a.m1(m+m1)} - 23(a+m1) 
= 21(m3+m31)+23(m+m1) - 23(m+m1) 
∴ cosB = 
21(m3+m31)
 
If tan2A = 43, find the value of sinA.
Given: tan2A = 43
Now, 
sinA = sin2.2A
= 1 + tan22A2tan2A 
= 1 +1692.43 
= 46 × 2516 
= 2524
 
If sin3A = 54, find the value of sinA.
Given: sin3A = 54
Now, 
sinA = sin33A
= 3sin3A - 4sin33A 
= 3 × 54 - 4 ×(54)3 
= 512 - 125256 
= 12544
 
Prove that: 1 + cosθ + sinθ1 - cosθ + sinθ =tan2θ
Here, 
1 + cosθ + sinθ1 - cosθ + sinθ =tan
2θ
Taking L.H.S, 
= 1 + cos2.2θ + sinθ1 - cos2.2θ + sinθ 
= 2cos22θ + sin2.2θ2sin22θ + sin2.2θ 
= 2cos22θ + 2sin2θcos2θ2sin22θ + 2sin2θcos2θ 
= 2cos2θ(cos2θ + sin2θ)2sin2θ(sin2θ + cos2θ)
 
= 1 + cosθ + sinθ1 - cosθ + sinθ 
∴ tan
2θ = R.H.S
Prove that: 1 + cos2θ + cosθsin2θ + sinθ = tan2θ
Here, 
1 + cos2θ + cosθsin2θ + sinθ = tan
2θ
Taking L.H.S, 
= 1 + cos2θ + cosθsin2θ + sinθ
= 1 + cos2.2θ + cos2θsin2θ + sin2.2θ 
= 2cos22θ + cos2θsin2θ + 2sin.2θcos2θ 
= cos2θ(2cos2θ + 1)sin2θ(1 + 2cos2θ)
∴ tan
2θ = R.H.S
Prove that: cosecθ - cotθ = tan2θ
Here, 
 cosecθ - cotθ = tan
2θ
Taking L.H.S, 
= cosecθ - cotθ 
= sinθ1 - sinθcosθ 
= sinθ1 - cosθ 
= sin2.2θ1 - cos2.2θ 
= 2sin2θcos2θ2sin22θ 
∴ tan
2θ = R.H.S
Prove that: cot2A - tan2A = 2cotA
Here, 
cot
2A - tan
2A = 2cotA
Taking L.H.S, 
= sin2Acos2A - cos2Asin2A 
= sin2Acos2Acos22A - sin22A 
 
= sin2Acos2Acos2.2A × 22 
= sin2.2A2cosA 
= sinA2cosA
∴ 2cotA = R.H.S
Prove that: 1 - cosθ + sinθ1 + cosθ + sinθ = cot2θ
Here, 
1 - cosθ + sinθ1 + cosθ + sinθ = cot2θ
Taking L.H.S, 
= 1 - cosθ + sinθ1 + cosθ + sinθ 
= 1 - cos2.2θ + sinθ1 + cos2.2θ + sinθ 
= 2sin22θ + sin2.2θ2cos22θ + sin2.2θ 
= 2sin22θ + 2sin2θcos2θ2cos22θ + 2sin2θcos2θ 
= 2sin2θ(sin2θ + cos2θ)2cos2θ(cos2θ + sin2θ)
 
∴ cot
2θ = R.H.S
 
If cos2α = 21, find the value of sinα.
Here, 
cos2α = 21
Now, 
sinα = sin2.2α
= 2sin2α.cos2α 
= 2 × 1 - cos22α × cos2α 
= 2 × 1 - 41 × 21 
= 44−1 
= 23
 
If cos3α = 21, find the value of sinα.
Here, 
cos
3α = 
21
Now, 
sinα = sin3.3α
= 3sin3α - 4sin33α 
= 31 - cos23α - 4(1 - cos23α)3 
= 31 - 41 - 4(1 - 41)3 
= 3 × 43 - 4 × 434343 
= 233 - 4 × 43 × 23
 
= 0
If cos45° = 21, prove that: sin(2221)° = 22−2
Given: cos45° = 21 
To prove: sin245° = 22−2
Now, 
cos45° = 21
or, cos2.245 = 21 
or, 2cos2245 = 21 + 1 
or, 2(1 - sin2245) = 21 + 2 
or, 1 - sin2245 = 221 + 2 
or, 1 - 221 + 2 = sin2245 
or, 2222- 1 - 2 = sin2245 
or, 222 - 1 = sin2245 
or, 222 - 1 × 22 = sin2245 
or, 42 - 2 = sin2245 
∴ sin245° = 22−2
 
Find the value of sin15° if cos30° = 23.
Here, 
cos30° = 
23
Now,
cos30° = 23
or, cos2.15° = 23 
or, 1 - 2sin215° = 23 
or, 1 - 23 = 2sin215° 
or, 22−3 = 2sin215° 
or, 42−3 = sin215° 
∴ sin15° = 22 - 3
If sin3α = 21, find the value of sinα.
Here,
sin3α = 21
Now, 
sinα = sin3.
3α
= 3sin3α - 4sin33α 
= 23 - 4(21)3 
= 23 - 84 
= 1
 
Prove that: sinθ1 + cosθ = cot2θ
Here, 
sinθ1 + cosθ = cot2θ
Taking L.H.S, 
= 
sinθ1 + cosθ 
= sin2.2θ1 + cos2.2θ 
= 2sin2θcos2θ2cos22θ
∴ cot2θ = R.H.S