If g(x) = 2x - 3 and fog(x) = 6x - 11, then find f-1 (x).
Here, -1 (x) = ?
Let, f(x) = mx + c --- (i) 
Comparing the corresponding values, we get, 
6x = 2mx  
-11 = -3m + c  
Using these values at (i), 
For f-1 (x), 
f(x) = y = 3x - 2 
  y + 2 3 \frac{\text{y + 2}}{3} 3 y + 2  x + 2 3 \frac{\text{x + 2}}{3} 3 x + 2  -1 (x) = x + 2 3 \frac{\text{x + 2}}{3} 3 x + 2  
 
If f(x) = 2x - 3 and gof(x) = 6x - 11, then find f-1 (x).
Here, -1 (x) = ?
Let, g(x) = mx + c --- (i) 
Comparing the corresponding values, we get, 
6x = 2mx  
-11 = -3m + c  
Using these values at (i), 
For g
-1 (x), 
g(x) = y = 3x - 2 
  
or, y + 2 = 3x 
or, 
y + 2 3 \frac{\text{y + 2}}{3} 3 y + 2   = x 
Interchanging the value of 'x' and 'y', we get, 
or, 
x + 2 3 \frac{\text{x + 2}}{3} 3 x + 2   = y 
∴ g
-1 (x) = 
x + 2 3 \frac{\text{x + 2}}{3} 3 x + 2   
If f = {x, 5x - 13}, g = {x, 2x + 7 3 \frac{\text{2x + 7}}{3} 3 2x + 7  -1 (x) = fof(x),
find the value of x.
Here, 
f = {x, 5x - 13} 
f(x)= 5x - 13 
g = {x, 
2x + 7 3 \frac{\text{2x + 7}}{3} 3 2x + 7  } 
g(x) = 
2x + 7 3 \frac{\text{2x + 7}}{3} 3 2x + 7  
g
-1 (x) = fof(x) 
x = ?
Now, for g-1 (x), g(x) = y = 2x + 7 3 \frac{\text{2x + 7}}{3} 3 2x + 7    3y - 7 2 \frac{\text{3y - 7}}{2} 2 3y - 7  3x - 7 2 \frac{\text{3x - 7}}{2} 2 3x - 7  -1 (x) = 3x - 7 2 \frac{\text{3x - 7}}{2} 2 3x - 7  
Again, = 5(5x - 13) - 13  
We have given, 
g-1 (x) = fof(x)
  3x - 7 2 \frac{\text{3x - 7}}{2} 2 3x - 7  149 47 \frac{\text{149}}{\text{47}} 47 149  
If 2f = kx - 3, 1 3 \frac{1}{3} 3 1  1 x + 2 \frac{1}{\text{x + 2}} x + 2 1  -1 (3) =
− 1 4 \frac{-1}{4} 4 − 1  
Here, kx - 3 2 \frac{\text{kx - 3}}{2} 2 kx - 3  3 x + 2 \frac{3}{\text{x + 2}} x + 2 3  -1 (3) = − 1 4 \frac{-1}{4} 4 − 1  
Now, for g-1 (x), 
g(x) = y = 3 x + 2 \frac{3}{\text{x + 2}} x + 2 3    3 y \frac{3}{y} y 3  3 y \frac{3}{y} y 3  
y = 3 - 2x x \frac{\text{3 - 2x}}{x} x 3 - 2x    -1 (x) = 3 - 2x x \frac{\text{3 - 2x}}{x} x 3 - 2x  -1 (3) = 3 - 6 3 \frac{\text{3 - 6}}{3} 3 3 - 6  
Again, we have given, 
fog-1 (3) = -1 4 \frac{\text{-1}}{\text{4}} 4 -1    -1 4 \frac{\text{-1}}{\text{4}} 4 -1  -2 4 \frac{\text{-2}}{\text{4}} 4 -2  1 2 \frac{\text{1}}{\text{2}} 2 1  -5 2 \frac{\text{-5}}{\text{2}} 2 -5  
Note:  fog-1 (3) → f[g-1 (3)],
(fog)-1 (3) → Inverse of whole composite function fog.
 
Given that the function f(x) = 3x - 7 and the function g(x) = 5x + 2 3 \frac{\text{5x + 2}}{3} 3 5x + 2  -1 f(x) = 8, find the value of x.
Solution, G i v e n , f ( x )  =  3 x − 7 g ( x )  =  5x + 2 3 g − 1 f ( x )  =  8 \begin{aligned}
Given,
f(x) &\text{ = } 3x - 7 \\
g(x) &\text{ = } \frac{\text{5x + 2}}{3} \\
g^{-1}f(x) &\text{ = } 8 \\
\end{aligned} G i v e n , f ( x ) g ( x ) g − 1 f ( x )   =  3 x − 7  =  3 5x + 2   =  8  
Now, for g-1 (x), g ( x ) = y  =  5x + 2 3 o r , 3 y − 2  =  5 x o r , 3y - 2 5  =  x \begin{aligned}
g(x) =
y &\text{ = } \frac{\text{5x + 2}}{3} \\
or, 3y - 2 &\text{ = } 5x \\
or, \frac{\text{3y - 2}}{5} &\text{ = } x \\
\end{aligned} g ( x ) = y or , 3 y − 2 or , 5 3y - 2    =  3 5x + 2   =  5 x  =  x  
y = 3y - 2 5 \frac{\text{3y - 2}}{5} 5 3y - 2    -1 (x) = 3x - 2 5 \frac{\text{3x - 2}}{5} 5 3x - 2  
We have given, 
g-1 f(x) = 8
  -1 (3x - 7) = 8 
or, 3(3x - 7) - 2 5 \frac{\text{3(3x - 7) - 2}}{5} 5 3(3x - 7) - 2     63 9 \frac{\text{63}}{\text{9}} 9 63  
 
If f(x) = x + 1 2 \frac{\text{x + 1}}{2} 2 x + 1  x - 5 2 \frac{\text{x - 5}}{2} 2 x - 5  -1 (x)
= 6, find the value of x.
Solution, G i v e n , f ( x )  =  x + 1 2 g ( x )  =  x - 5 2 f o g − 1 ( x )  =  6 \begin{aligned}
Given,
f(x) &\text{ = } \frac{\text{x + 1}}{2} \\
g(x) &\text{ = } \frac{\text{x - 5}}{2} \\
fog^{-1}(x) &\text{ = } 6 \\
\end{aligned} G i v e n , f ( x ) g ( x ) f o g − 1 ( x )   =  2 x + 1   =  2 x - 5   =  6  
Now, for g-1 (x), g ( x ) = y  =  x - 5 2 o r , 2 y + 5  =  x \begin{aligned}
g(x) =
y &\text{ = } \frac{\text{x - 5}}{2} \\
or, 2y + 5 &\text{ = } x \\
\end{aligned} g ( x ) = y or , 2 y + 5   =  2 x - 5   =  x  -1 (x) = 2x + 5
Again, we have given, fog-1 (x) = 6   
 
If f(x) = 3x + 4 and g(x) = 2(x + 1) then prove that (fog)(x) = (gof)(x).
Solution, 
To prove, fog(x) = gof(x)
Now, for fog(x), = 3(2x + 2) + 4  
Again, for gof(x), = 2(3x + 4) + 2   
 
If f(x) = 2x - 7 and fog(x) = 4x + 3, find (gof)-1 (x).
Here, -1 (x)= ?
Now, fog(x) = 4x + 3  
Again, = 2(2x - 7) + 5 [from (A)]
 
Finally, for (gof)-1 (x), gof(x) = y = 4x - 9  y + 9 4 \frac{\text{y + 9}}{4} 4 y + 9  x + 9 4 \frac{\text{x + 9}}{4} 4 x + 9  -1 (x) = x + 9 4 \frac{\text{x + 9}}{4} 4 x + 9  
 
If f(x) = 3x - 1 and fog(x) = 6x + 5, the find (gof)-1 (x).
Here, -1 (x) = ?
Now, fog(x) = 6x + 5  
Again, = 2(3x - 1) + 2  
Finally, for (gof)-1 (x), gof(x) = y = 6x   y 6 \frac{y}{6} 6 y  x 6 \frac{x}{6} 6 x  -1 (x) = x 6 \frac{x}{6} 6 x  
 
If f(x) = 3x - 7, g(x) = 4x - 2 3 \smash{\frac{\text{4x - 2}}{\text{3}}} 3 4x - 2  -1 (x) =
g(x), find the value of x.
 
Solution, Given, f(x)  = 3x - 7 g(x)  =  4x - 2 3 f − 1 ( x )  = g(x) \begin{aligned}
\text{Given, }
\text{f(x)} & \text{ = } \text{3x - 7} \\
\text{g(x)} &\text{ = } \frac{\text{4x - 2}}{3} \\
f^{-1}(x) &\text{ = } \text{g(x)}
\end{aligned} Given,  f(x) g(x) f − 1 ( x )   =  3x - 7  =  3 4x - 2   =  g(x)  
Now, for f-1 (x), f ( x )  =  y  = 3x - 7 or, y + 7  =  3 x or,  y + 7 3  =  x \begin{aligned}
f(x) \text{ = } y &\text{ = } \text{3x - 7} \
\text{or, y + 7} & \text{ = } 3x \
\text{or, }\frac{\text{y + 7}}{3} & \text{ = } x \
\end{aligned} f ( x )  =  y or, y + 7 or,  3 y + 7    =  3x - 7  =  3 x  =  x  x + 7 3  =  y ∴ f − 1 ( x )  =  x + 7 3 \begin{aligned}
\frac{\text{x + 7}}{3} & \text{ = } y \
\therefore f^{-1}(x) & \text{ = } \frac{\text{x + 7}}{3} \
\end{aligned} 3 x + 7  ∴ f − 1 ( x )   =  y  =  3 x + 7   
Again, we have given, f − 1 ( x )  = g(x) or,  x + 7 3  =  4x - 2 3 or, 9  = 3x ∴ 3  = x \begin{aligned}
f^{-1}(x) &\text{ = } \text{g(x)} \\
\text{or, }\frac{\text{x + 7}}{\cancel{3}} &\text{ = } \frac{\text{4x - 2}}{\cancel{3}} \\
\text{or, 9} &\text{ = } \text{3x} \\
\therefore \text{3} &\text{ = } \text{x} \\
\end{aligned} f − 1 ( x ) or,  3  x + 7  or, 9 ∴ 3   =  g(x)  =  3  4x - 2   =  3x  =  x  
 
Given that h(x) = x 2 - x \frac{x}{\text{2 - x}} 2 - x x  -1 (1).
Solution, Given, h(x)  =  x 2 - x g(x)  = ax - 5 goh(4)  = -13 \begin{aligned}
\text{Given, }
\text{h(x)} &\text{ = }\frac{\text{x}}{\text{2 - x}} \\
\text{g(x)} &\text{ = }\text{ax - 5} \\
\text{goh(4)} &\text{ = }\text{-13} \\
\end{aligned} Given,  h(x) g(x) goh(4)   =  2 - x x   =  ax - 5  =  -13  
To find, a = ?, g-1 (1) = ?
Now, h(x)  =  x 2 - x or, h(4)  =  4 2 - 4  = -2 \begin{aligned}
\text{Now, }
\text{h(x)} &\text{ = }\frac{\text{x}}{\text{2 - x}} \\
\text{or, h(4)} &\text{ = }\frac{\text{4}}{\text{2 - 4}} \\
&\text{ = }\text{-2} \\
\end{aligned} Now,  h(x) or, h(4)   =  2 - x x   =  2 - 4 4   =  -2  
Again, goh(4)  = -13 or, g(-2)  = -13 or, -2a - 5  = -13 or, -2a  = -13 + 5 ∴ a  = 4 \begin{aligned}
\text{Again, }
\text{goh(4)} &\text{ = }\text{-13} \\
\text{or, g(-2)} &\text{ = }\text{-13} \\
\text{or, -2a - 5} &\text{ = }\text{-13} \\
\text{or, -2a} &\text{ = }\text{-13 + 5} \\
\therefore \text{a} &\text{ = }\text{4}
\end{aligned} Again,  goh(4) or, g(-2) or, -2a - 5 or, -2a ∴ a   =  -13  =  -13  =  -13  =  -13 + 5  =  4  
Again, for g-1 (x), g(x) =  y  = 4x - 5 or,  y + 5 4  = x \begin{aligned}
\text{g(x)}\text{ = }y &\text{ = }\text{4x - 5} \
\text{or, } \frac{\text{y + 5}}{\text{4}} &\text{ = }\text{x} \
\end{aligned} g(x)  =  y or,  4 y + 5    =  4x - 5  =  x  or, y  =  x + 5 4 or,  g − 1 ( x )  =  x + 5 4 ∴ g − 1 ( 1 )  =  6 4  =  3 2 \begin{aligned}
\text{or, y} &\text{ = }\frac{\text{x + 5}}{\text{4}} \
\text{or, } g^{-1}(x) &\text{ = }\frac{\text{x + 5}}{\text{4}} \
\therefore g^{-1}(1) &\text{ = }\frac{\text{6}}{\text{4}}\text{ = }\frac{\text{3}}{\text{2}} \
\end{aligned} or, y or,  g − 1 ( x ) ∴ g − 1 ( 1 )   =  4 x + 5   =  4 x + 5   =  4 6   =  2 3   
 
If f(x) = 3x - 4 and f-1 g(x) = 3x + 2 3 \frac{\text{3x + 2}}{3} 3 3x + 2  -1 ( 1 2 ) \left(\frac{1}{2}\right) ( 2 1  ) 
Solution, Given, f(x)  = 3x - 4 g(x)  = a (let) f − 1 g ( x )  =  3x + 2 3 \begin{aligned}
\text{Given, }
\text{f(x)} &\text{ = }\text{3x - 4} \\
\text{g(x)} &\text{ = }\text{a (let)} \\
f^{-1}g(x) &\text{ = }\frac{\text{3x + 2}}{\text{3}} \\
\end{aligned} Given,  f(x) g(x) f − 1 g ( x )   =  3x - 4  =  a (let)  =  3 3x + 2   
To find, g(x)  = ? f − 1 ( 1 2 )  = ? \begin{aligned}
\text{To find, }
\text{g(x)} &\text{ = }\text{?} \
f^{-1}\left(\frac{1}{2}\right) &\text{ = }\text{?} \
\end{aligned} To find,  g(x) f − 1 ( 2 1  )   =  ?  =  ?  
For, f-1 (x), f(x) = y  = 3x - 4 or,  y + 4 3  = x \begin{aligned}
\text{f(x)}\text{ = }\text{y} &\text{ = }\text{3x - 4} \
\text{or, } \frac{\text{y + 4}}{3} &\text{ = }\text{x} \
\end{aligned} f(x)  =  y or,  3 y + 4    =  3x - 4  =  x  or,  x + 4 3  = y ∴ f − 1 ( x )  =  x + 4 3 \begin{aligned}
\text{or, } \frac{\text{x + 4}}{3} &\text{ = }\text{y} \
\therefore f^{-1}(x) &\text{ = }\frac{\text{x + 4}}{3} \
\end{aligned} or,  3 x + 4  ∴ f − 1 ( x )   =  y  =  3 x + 4   ∴ f − 1 ( 1 2 )  =  1 + 8 6  =  3 2 \therefore f^{-1}\left(\frac{1}{2}\right)\text{ = }\frac{\text{1 + 8}}{\text{6}} \text{ = }\frac{\text{3}}{\text{2}} ∴ f − 1 ( 2 1  )  =  6 1 + 8   =  2 3  
Again, f − 1 g ( x )  =  3x + 2 3 or,  f − 1 ( a )  =  3x + 2 3 or, a + 4 3  =  3x + 2 3 or, a + 4  = 3x + 2 ∴ a = g(x)  = 3x - 2 \begin{aligned}
f^{-1}g(x) &\text{ = }\frac{\text{3x + 2}}{\text{3}} \\
\text{or, } f^{-1}(a) &\text{ = }\frac{\text{3x + 2}}{\text{3}} \\ 
\text{or,}\frac{\text{a + 4}}{3} &\text{ = } \frac{\text{3x + 2}}{3} \\
\text{or, a + 4} &\text{ = }\text{3x + 2} \\
\therefore \text{a}\text{ = }\text{g(x)} &\text{ = }\text{3x - 2} \\
\end{aligned} f − 1 g ( x ) or,  f − 1 ( a ) or, 3 a + 4  or, a + 4 ∴ a  =  g(x)   =  3 3x + 2   =  3 3x + 2   =  3 3x + 2   =  3x + 2  =  3x - 2  
 
If f(x) = 2x + 3, g(x) = x + 5 2 \frac{\text{x + 5}}{2} 2 x + 5  -1 (x), find the
value of x.
Solution, Given, f(x)  = 2x + 3 g(x)   =  x + 5 2 ff(x)  =  g − 1 ( x ) \begin{aligned}
\text{Given, f(x)}
&\text{ = } \text{2x + 3} \\
\text{g(x) } &\text{ = } \frac{\text{x + 5}}{\text{2}} \\
\text{ff(x)} &\text{ = } g^{-1}(x) \\
\end{aligned} Given, f(x) g(x)  ff(x)   =  2x + 3  =  2 x + 5   =  g − 1 ( x )  
Now, for g-1 (x), g(x)  =  y  =  x + 5 2 or, 2y  = x + 5 or, 2y - 5  = x \begin{aligned}
\text{g(x) } \text{ = } y &\text{ = } \frac{\text{x + 5}}{\text{2}} \\
\text{or, 2y} &\text{ = } \text{x + 5} \\
\text{or, 2y - 5} &\text{ = } \text{x} \\
\end{aligned} g(x)   =  y or, 2y or, 2y - 5   =  2 x + 5   =  x + 5  =  x  or, 2x - 5  = y ∴ g − 1 ( x )  =  2x - 5 \begin{aligned}
\text{or, 2x - 5} &\text{ = } \text{y} \\
\therefore g^{-1}(x) &\text{ = } \text{ 2x - 5} \\
\end{aligned} or, 2x - 5 ∴ g − 1 ( x )   =  y  =   2x - 5  
Again, we have given, 
ff(x) =  g − 1 ( x ) \text{ff(x)} \text{ = } g^{-1}(x) ff(x)  =  g − 1 ( x )   or, f(2x + 3) = 2x - 5 \text{or, f(2x + 3)} \text{ = } \text{2x - 5} or, f(2x + 3)  =  2x - 5 or, 4x + 6 + 3 = 2x - 5 \text{or, 4x + 6 + 3} \text{ = } \text{2x - 5} or, 4x + 6 + 3  =  2x - 5 or, 4x + 9 + 5 = 2x \text{or, 4x + 9 + 5} \text{ = } \text{2x} or, 4x + 9 + 5  =  2x or, -2x = 14 \text{or, -2x} \text{ = } \text{14} or, -2x  =  14 ∴ x = -7 \therefore \text{x} \text{ = } \text{-7} ∴ x  =  -7 
 
If f(x) = 2x + 1, g(x) = 3x + 1 2 \frac{\text{3x + 1}}{2} 2 3x + 1  -1 (x), find the
value of x.
Solution, Given, f(x)  = 2x + 1 g(x)  =  3x + 1 2 ff(x)  =  g − 1 ( x ) \begin{aligned}
\text{Given, f(x)}
&\text{ = } \text{2x + 1} \\
\text{g(x)} &\text{ = } \frac{\text{3x + 1}}{\text{2}} \\
\text{ff(x)} &\text{ = } g^{-1}(x) \\
\end{aligned} Given, f(x) g(x) ff(x)   =  2x + 1  =  2 3x + 1   =  g − 1 ( x )  
Now, for g-1 (x), g(x) =  y  =  3x + 1 2 or,  2y - 1 3  = x \begin{aligned}
\text{g(x)} \text{ = } y &\text{ = } \frac{\text{3x + 1}}{2} \\
\text{or, } \frac{\text{2y - 1}}{\text{3}} &\text{ = } \text{x} \\
\end{aligned} g(x)  =  y or,  3 2y - 1    =  2 3x + 1   =  x  or, y  =  2x - 1 3 ∴ g − 1 ( x )  =  2x - 1 3 \begin{aligned}
\text{or, y} &\text{ = } \frac{\text{2x - 1}}{\text{3}} \\
\therefore g^{-1}(x) &\text{ = } \frac{\text{2x - 1}}{\text{3}}
\end{aligned} or, y ∴ g − 1 ( x )   =  3 2x - 1   =  3 2x - 1   
Again, we have given, 
ff(x) =  g − 1 ( x ) \text{ff(x)} \text{ = } g^{-1}(x) ff(x)  =  g − 1 ( x )  
or, f(2x + 1) =  2x - 1 3 \text{or, f(2x + 1)} \text{ = } \frac{\text{2x - 1}}{\text{3}} or, f(2x + 1)  =  3 2x - 1  or, 2(2x + 1) + 1 =  2x - 1 3 \text{or, 2(2x + 1) + 1} \text{ = } \frac{\text{2x - 1}}{\text{3}} or, 2(2x + 1) + 1  =  3 2x - 1  or, 4x + 3 =  2x - 1 3 \text{or, 4x + 3} \text{ = } \frac{\text{2x - 1}}{\text{3}} or, 4x + 3  =  3 2x - 1  12x + 9 = 2x - 1 \text{12x + 9} \text{ = } \text{2x - 1} 12x + 9  =  2x - 1 12x + 10 = 2x \text{12x + 10} \text{ = } \text{2x} 12x + 10  =  2x 10x = -10 \text{10x} \text{ = } \text{-10} 10x  =  -10 ∴ x = -1 \therefore \text{x} \text{ = } \text{-1} ∴ x  =  -1 
 
If f(x) = x 3 + 2x \frac{x}{\text{3 + 2x}} 3 + 2x x  -1 (x), find the value of x.
Solution, Given, f(x)  =  x 3 + 2x f(x)  =  f − 1 ( x ) \begin{aligned}
\text{Given, f(x)}
&\text{ = } \frac{\text{x}}{\text{3 + 2x}} \\
\text{f(x)} &\text{ = } f^{-1}(x) \\
\end{aligned} Given, f(x) f(x)   =  3 + 2x x   =  f − 1 ( x )  
Now, for f-1 (x), 
f(x) = y =  x 3 + 2x \text{f(x)} \text{ = } \text{y} \text{ = } \frac{\text{x}}{\text{3 + 2x}} f(x)  =  y  =  3 + 2x x    or, 3y + 2xy = x \text{or, 3y + 2xy} \text{ = } \text{x} or, 3y + 2xy  =  x or, 3y = x - 2xy \text{or, 3y} \text{ = } \text{x - 2xy} or, 3y  =  x - 2xy or, 3y = x(1 - 2y) \text{or, 3y} \text{ = } \text{x(1 - 2y)} or, 3y  =  x(1 - 2y) or, x =  3y 1 - 2y \text{or, x} \text{ = } \frac{\text{3y}}{\text{1 - 2y}} or, x  =  1 - 2y 3y  or, y  =  3x 1 - 2x ∴ f − 1 ( x )  =  3x 1 - 2x \begin{aligned}
\text{or, y} &\text{ = } \frac{\text{3x}}{\text{1 - 2x}} \\
\therefore f^{-1}(x) &\text{ = } \frac{\text{3x}}{\text{1 - 2x}} \\
\end{aligned} or, y ∴ f − 1 ( x )   =  1 - 2x 3x   =  1 - 2x 3x   
Again, we have given, f(x)  =  f − 1 ( x ) or,  x 3 + 2x  =  3x 1 - 2x or, x - 2 x 2  = 9x + 6 x 2 or, 8x + 8 x 2  = 0 or, 8x(1 + x)  = 0 \begin{aligned}
\text{f(x)} &\text{ = } f^{-1}(x) \
\text{or, } \frac{\text{x}}{\text{3 + 2x}} &\text{ = } \frac{\text{3x}}{\text{1 - 2x}} \
\text{or, x - 2}x^2 &\text{ = } \text{9x + 6}x^2 \
\text{or, 8x + 8}x^2 &\text{ = } \text{0} \
\text{or, 8x(1 + x)} &\text{ = } \text{0} \
\end{aligned} f(x) or,  3 + 2x x  or, x - 2 x 2 or, 8x + 8 x 2 or, 8x(1 + x)   =  f − 1 ( x )  =  1 - 2x 3x   =  9x + 6 x 2  =  0  =  0  
 
If 3.f(x) = 4x + 5 and g(x) = 5x - 4, find the value of f-1 og-1 (1).
Solution, Given, 3.f(x)   = 4x + 5 f(x)   =  4x + 5 3 g(x)  = 5x - 4 \begin{aligned}
\text{Given, 3.f(x) }
&\text{ = } \text{4x + 5} \\
\text{f(x) } &\text{ = } \frac{\text{4x + 5}}{\text{3}} \\
\text{g(x)} &\text{ = } \text{5x - 4} \\
\end{aligned} Given, 3.f(x)  f(x)  g(x)   =  4x + 5  =  3 4x + 5   =  5x - 4  -1 og-1 (1) = ?
For g-1 (x), g(x) = y  = 5x - 4 or, y + 4  = 5x or,  y + 4 5  = x \begin{aligned}
\text{g(x)} = y &\text{ = } \text{5x - 4} \\
\text{or, y + 4} &\text{ = } \text{5x} \\
\text{or, } \frac{\text{y + 4}}{\text{5}} &\text{ = } \text{x} \\
\end{aligned} g(x) = y or, y + 4 or,  5 y + 4    =  5x - 4  =  5x  =  x  or, y  =  x + 4 5 ∴ g − 1 ( x )  =  x + 4 5 ∴ g − 1 ( x )  = 1 \begin{aligned}
\text{or, y} &\text{ = } \frac{\text{x + 4}}{\text{5}} \\
\therefore g^{-1}(x) &\text{ = } \frac{\text{x + 4}}{\text{5}} \\
\therefore g^{-1}(x) &\text{ = } \text{1}
\end{aligned} or, y ∴ g − 1 ( x ) ∴ g − 1 ( x )   =  5 x + 4   =  5 x + 4   =  1  
For f-1 (x), f(x)  = y  =  4x + 5 3 or,  3y - 5 4  = x \begin{aligned}
\text{f(x) } = \text{y} &\text{ = } \frac{\text{4x + 5}}{\text{3}} \\
\text{or, } \frac{\text{3y - 5}}{\text{4}} &\text{ = } \text{x} \\
\end{aligned} f(x)  = y or,  4 3y - 5    =  3 4x + 5   =  x  or, y  =  3x - 5 4 ∴ f − 1 ( x )  =  3x - 5 4 \begin{aligned}
\text{or, y} &\text{ = } \frac{\text{3x - 5}}{\text{4}} \\
\therefore f^{-1}(x) &\text{ = } \frac{\text{3x - 5}}{\text{4}} \\
\end{aligned} or, y ∴ f − 1 ( x )   =  4 3x - 5   =  4 3x - 5   
Finally, f − 1 g − 1 ( 1 )  =  f − 1 ( 1 )  =  3(1) - 5 4  =  -2 4 ∴ f − 1 g − 1 ( 1 )  =  -1 2 \begin{aligned}
f^{-1}g^{-1}(1) &\text{ = } f^{-1}(1) \
&\text{ = } \frac{\text{3(1) - 5}}{\text{4}} \
&\text{ = } \frac{\text{-2}}{\text{4}} \
\therefore f^{-1}g^{-1}(1) &\text{ = } \frac{\text{-1}}{\text{2}} \
\end{aligned} f − 1 g − 1 ( 1 ) ∴ f − 1 g − 1 ( 1 )   =  f − 1 ( 1 )  =  4 3(1) - 5   =  4 -2   =  2 -1   
 
If f(x) = x2  - 2x, g(x) = 2x + 3 and fog-1 (x) = 3 then find the
value of 'x'.
Solution, Given, f(x)   =  x 2 − 2x g(x)  = 2x + 3 f o g − 1 ( x )  = 3 \begin{aligned}
\text{Given, f(x) }
&\text{ = } x^2 - \text{2x} \\
\text{g(x)} &\text{ = } \text{2x + 3} \\
fog^{-1}(x) &\text{ = } \text{3} \\
\end{aligned} Given, f(x)  g(x) f o g − 1 ( x )   =  x 2 − 2x  =  2x + 3  =  3  
Now, for g-1 (x), g(x) = y  = 2x + 3 or,  y - 3 2  = x \begin{aligned}
\text{g(x)} = \text{y} &\text{ = } \text{2x + 3} \\
\text{or, } \frac{\text{y - 3}}{2} &\text{ = } \text{x} \\
\end{aligned} g(x) = y or,  2 y - 3    =  2x + 3  =  x  or,  x - 3 2  = y ∴ g − 1 ( x )  =  x - 3 2 \begin{aligned}
\text{or, } \frac{\text{x - 3}}{2} &\text{ = } \text{y} \\
\therefore g^{-1}(x) &\text{ = } \frac{\text{x - 3}}{2} \\
\end{aligned} or,  2 x - 3  ∴ g − 1 ( x )   =  y  =  2 x - 3   
Again, we've given, f o g − 1 ( x )  = 3 fog^{-1}(x) \text{ = } \text{3} f o g − 1 ( x )  =  3 or, f ( x - 3 2 )  = 3 \text{or, } \text{f}\left(\frac{\text{x - 3}}{\text{2}}\right) \text{ = } \text{3} or,  f ( 2 x - 3  )  =  3 or,  ( x - 3 2 ) 2 − 2 ( x - 3 2 )  = 3 \text{or, } \left(\frac{\text{x - 3}}{\text{2}}\right)^{2} - \cancel{2}\left(\frac{\text{x -
3}}{\cancel{2}}\right)
\text{ = } \text{3} or,  ( 2 x - 3  ) 2 − 2  ( 2  x - 3  )  =  3 or,  x 2 - 6x + 9 4 - x +  3  =  3 \text{or, } \frac{x^2 \text{- 6x + 9}}{4} \text{- x + } \cancel{3} \text{ = } \cancel{3} or,  4 x 2 - 6x + 9  - x +  3   =  3  or,  x 2 - 6x + 9 = 4x \text{or, } x^2 \text{- 6x + 9} \text{ = } \text{4x} or,  x 2 - 6x + 9  =  4x or,  x 2 - 6x + 9 - 4x = 0 \text{or, } x^2 \text{- 6x + 9 - 4x} \text{ = } \text{0} or,  x 2 - 6x + 9 - 4x  =  0 or,  x 2 - 10x + 9 = 0 \text{or, } x^2 \text{- 10x + 9} \text{ = } \text{0} or,  x 2 - 10x + 9  =  0 or,  x 2 - 9x - x + 9 = 0 \text{or, } x^2 \text{- 9x - x + 9} \text{ = } \text{0} or,  x 2 - 9x - x + 9  =  0 or, x(x - 9) -1(x + 9) = 0 \text{or, } \text{x(x - 9) -1(x + 9)} \text{ = } \text{0} or,  x(x - 9) -1(x + 9)  =  0 or, (x - 9)(x - 1) = 0 \text{or, } \text{(x - 9)(x - 1)} \text{ = } \text{0} or,  (x - 9)(x - 1)  =  0 ∴ x = 1, 9 \therefore \text{x} \text{ = } \text{1, 9} ∴ x  =  1, 9