If g(x) = 2x - 3 and fog(x) = 6x - 11, then find f-1 (x).
Here,
g(x) = 2x - 3
fog(x) = 6x - 11
f-1 (x) = ?
Let, f(x) = mx + c --- (i)
so, f(g(x)) = m(g(x)) + c
or, 6x - 11 = m(2x - 3) + c [fog(x) = f(g(x))]
or, 6x - 11 = 2mx - 3m + c
Comparing the corresponding values, we get,
6x = 2mx
so, m = 3
-11 = -3m + c
or, -11 = -3(3) + c
so, c = -2
Using these values at (i),
f(x) = 3x - 2
For f-1 (x),
f(x) = y = 3x - 2
or, y + 2 = 3x
or, y + 2 3 \frac{\text{y + 2}}{3} 3 y + 2 = x
Interchanging the value of 'x' and 'y', we get,
or, x + 2 3 \frac{\text{x + 2}}{3} 3 x + 2 = y
∴ f-1 (x) = x + 2 3 \frac{\text{x + 2}}{3} 3 x + 2
If f(x) = 2x - 3 and gof(x) = 6x - 11, then find f-1 (x).
Here,
f(x) = 2x - 3
gof(x) = 6x - 11
g-1 (x) = ?
Let, g(x) = mx + c --- (i)
so, g(f(x)) = m(f(x)) + c
or, 6x - 11 = m(2x - 3) + c [gof(x) = g(f(x))]
or, 6x - 11 = 2mx - 3m + c
Comparing the corresponding values, we get,
6x = 2mx
so, m = 3
-11 = -3m + c
or, -11 = -3(3) + c
so, c = -2
Using these values at (i),
g(x) = 3x - 2
For g
-1 (x),
g(x) = y = 3x - 2
or, y + 2 = 3x
or,
y + 2 3 \frac{\text{y + 2}}{3} 3 y + 2 = x
Interchanging the value of 'x' and 'y', we get,
or,
x + 2 3 \frac{\text{x + 2}}{3} 3 x + 2 = y
∴ g
-1 (x) =
x + 2 3 \frac{\text{x + 2}}{3} 3 x + 2
If f = {x, 5x - 13}, g = {x, 2x + 7 3 \frac{\text{2x + 7}}{3} 3 2x + 7 } and g-1 (x) = fof(x),
find the value of x.
Here,
f = {x, 5x - 13}
f(x)= 5x - 13
g = {x,
2x + 7 3 \frac{\text{2x + 7}}{3} 3 2x + 7 }
g(x) =
2x + 7 3 \frac{\text{2x + 7}}{3} 3 2x + 7
g
-1 (x) = fof(x)
x = ?
Now, for g-1 (x),
g(x) = y = 2x + 7 3 \frac{\text{2x + 7}}{3} 3 2x + 7
or, 3y - 7 2 \frac{\text{3y - 7}}{2} 2 3y - 7 = x
Interchanging the value of 'x' and 'y', we get,
or, 3x - 7 2 \frac{\text{3x - 7}}{2} 2 3x - 7 = y
∴ g-1 (x) = 3x - 7 2 \frac{\text{3x - 7}}{2} 2 3x - 7 ---- (A)
Again,
fof(x) = f(5x - 13)
= 5(5x - 13) - 13
= 25x - 65 -13
= 25x - 78 ---- (B)
We have given,
g-1 (x) = fof(x)
or, 3x - 7 2 \frac{\text{3x - 7}}{2} 2 3x - 7 = 25x - 78 (from 'A' and 'B')
or, 3x - 7 = 50x - 156
or, 149 = 47x
∴ x = 149 47 \frac{\text{149}}{\text{47}} 47 149
If 2f = kx - 3, 1 3 \frac{1}{3} 3 1 g(x) = 1 x + 2 \frac{1}{\text{x + 2}} x + 2 1 and fog-1 (3) =
− 1 4 \frac{-1}{4} 4 − 1 , find the value of k.
Here,
2.f(x) = kx - 3
f(x) = kx - 3 2 \frac{\text{kx - 3}}{2} 2 kx - 3
g(x) = 3 x + 2 \frac{3}{\text{x + 2}} x + 2 3
fog-1 (3) = − 1 4 \frac{-1}{4} 4 − 1
k = ?
Now, for g-1 (x),
g(x) = y = 3 x + 2 \frac{3}{\text{x + 2}} x + 2 3
or, x + 2 = 3 y \frac{3}{y} y 3
or, x = 3 y \frac{3}{y} y 3 - 2
Interchanging the value of 'x' and 'y', we get,
y = 3 - 2x x \frac{\text{3 - 2x}}{x} x 3 - 2x
∴ g-1 (x) = 3 - 2x x \frac{\text{3 - 2x}}{x} x 3 - 2x
∴ g-1 (3) = 3 - 6 3 \frac{\text{3 - 6}}{3} 3 3 - 6 = -1
Again, we have given,
fog-1 (3) = -1 4 \frac{\text{-1}}{\text{4}} 4 -1
or, f(-1) = -1 4 \frac{\text{-1}}{\text{4}} 4 -1
or, -k - 3 = -2 4 \frac{\text{-2}}{\text{4}} 4 -2
or, k + 3 = 1 2 \frac{\text{1}}{\text{2}} 2 1
∴ k = -5 2 \frac{\text{-5}}{\text{2}} 2 -5
Note: fog-1 (3) → f[g-1 (3)],
(fog)-1 (3) → Inverse of whole composite function fog.
Given that the function f(x) = 3x - 7 and the function g(x) = 5x + 2 3 \frac{\text{5x + 2}}{3} 3 5x + 2 . If
g-1 f(x) = 8, find the value of x.
Solution,
G i v e n , f ( x ) = 3 x − 7 g ( x ) = 5x + 2 3 g − 1 f ( x ) = 8 \begin{aligned}
Given,
f(x) &\text{ = } 3x - 7 \\
g(x) &\text{ = } \frac{\text{5x + 2}}{3} \\
g^{-1}f(x) &\text{ = } 8 \\
\end{aligned} G i v e n , f ( x ) g ( x ) g − 1 f ( x ) = 3 x − 7 = 3 5x + 2 = 8
To find, x = ?
Now, for g-1 (x),
g ( x ) = y = 5x + 2 3 o r , 3 y − 2 = 5 x o r , 3y - 2 5 = x \begin{aligned}
g(x) =
y &\text{ = } \frac{\text{5x + 2}}{3} \\
or, 3y - 2 &\text{ = } 5x \\
or, \frac{\text{3y - 2}}{5} &\text{ = } x \\
\end{aligned} g ( x ) = y or , 3 y − 2 or , 5 3y - 2 = 3 5x + 2 = 5 x = x
Interchanging the value of 'x' and 'y', we get,
y = 3y - 2 5 \frac{\text{3y - 2}}{5} 5 3y - 2
∴ g-1 (x) = 3x - 2 5 \frac{\text{3x - 2}}{5} 5 3x - 2
We have given,
g-1 f(x) = 8
or, g-1 (3x - 7) = 8
or, 3(3x - 7) - 2 5 \frac{\text{3(3x - 7) - 2}}{5} 5 3(3x - 7) - 2 = 8
or, 9x - 21 - 2 = 40
∴ x = 63 9 \frac{\text{63}}{\text{9}} 9 63 = 7
If f(x) = x + 1 2 \frac{\text{x + 1}}{2} 2 x + 1 , g(x) = x - 5 2 \frac{\text{x - 5}}{2} 2 x - 5 and fog-1 (x)
= 6, find the value of x.
Solution,
G i v e n , f ( x ) = x + 1 2 g ( x ) = x - 5 2 f o g − 1 ( x ) = 6 \begin{aligned}
Given,
f(x) &\text{ = } \frac{\text{x + 1}}{2} \\
g(x) &\text{ = } \frac{\text{x - 5}}{2} \\
fog^{-1}(x) &\text{ = } 6 \\
\end{aligned} G i v e n , f ( x ) g ( x ) f o g − 1 ( x ) = 2 x + 1 = 2 x - 5 = 6
To find, x = ?
Now, for g-1 (x),
g ( x ) = y = x - 5 2 o r , 2 y + 5 = x \begin{aligned}
g(x) =
y &\text{ = } \frac{\text{x - 5}}{2} \\
or, 2y + 5 &\text{ = } x \\
\end{aligned} g ( x ) = y or , 2 y + 5 = 2 x - 5 = x
Interchanging the value of 'x' and 'y', we get,
or, 2x + 5 = y
∴ g-1 (x) = 2x + 5
Again, we have given,
fog-1 (x) = 6
or, f(2x + 5) = 6
or, 2x + 5 + 1 = 12
or, 2x = 6
∴ x = 3
If f(x) = 3x + 4 and g(x) = 2(x + 1) then prove that (fog)(x) = (gof)(x).
Solution,
Given, f(x) = 3x + 4
g(x) = 2(x + 1) = 2x + 2
To prove, fog(x) = gof(x)
Now, for fog(x),
fog(x) = f(2x + 2)
= 3(2x + 2) + 4
= 6x + 6 + 4
= 6x + 10 ---- (A)
Again, for gof(x),
gof(x) = g(3x + 4)
= 2(3x + 4) + 2
= 6x + 8 + 2
= 6x + 10 ---- (B)
So, from (A) and (B), fog(x) = gof(x).
If f(x) = 2x - 7 and fog(x) = 4x + 3, find (gof)-1 (x).
Here,
f(x) = 2x - 7
g(x) = a(let)
fog(x) = 4x + 3
(gof)-1 (x)= ?
Now,
fog(x) = 4x + 3
or, f(a) = 4x + 3
or, 2a - 7 = 4x + 3
or, 2a = 4x + 10
or, a = 2x + 5
∴ g(x) = 2x + 5 --- (A)
Again,
gof(x) = g(2x - 7)
= 2(2x - 7) + 5 [from (A)]
= 4x - 14 + 5
= 4x - 9
Finally, for (gof)-1 (x),
gof(x) = y = 4x - 9
or, y + 9 4 \frac{\text{y + 9}}{4} 4 y + 9 = x
Interchanging the value of 'x' and 'y', we get,
y = x + 9 4 \frac{\text{x + 9}}{4} 4 x + 9
∴ (gof)-1 (x) = x + 9 4 \frac{\text{x + 9}}{4} 4 x + 9
If f(x) = 3x - 1 and fog(x) = 6x + 5, the find (gof)-1 (x).
Here,
f(x) = 3x - 1
g(x) = a (let)
fog(x) = 6x + 5
(gof)-1 (x) = ?
Now,
fog(x) = 6x + 5
or, f(a) = 6x + 5
or, 3a - 1 = 6x + 5
or, 3a = 6x + 6
∴ a = g(x) = 2(x + 1)
Again, gof(x) = g(3x - 1)
= 2(3x - 1) + 2
= 6x - 2 + 2
= 6x
Finally, for (gof)-1 (x),
gof(x) = y = 6x
or, y 6 \frac{y}{6} 6 y = x
Interchanging the value of 'x' and 'y', we get,
or, x 6 \frac{x}{6} 6 x = y
∴ (gof)-1 (x) = x 6 \frac{x}{6} 6 x
If f(x) = 3x - 7, g(x) = 4x - 2 3 \smash{\frac{\text{4x - 2}}{\text{3}}} 3 4x - 2 and f-1 (x) =
g(x), find the value of x.
Solution,
Given, f(x) = 3x - 7 g(x) = 4x - 2 3 f − 1 ( x ) = g(x) \begin{aligned}
\text{Given, }
\text{f(x)} & \text{ = } \text{3x - 7} \\
\text{g(x)} &\text{ = } \frac{\text{4x - 2}}{3} \\
f^{-1}(x) &\text{ = } \text{g(x)}
\end{aligned} Given, f(x) g(x) f − 1 ( x ) = 3x - 7 = 3 4x - 2 = g(x)
To find, x = ?
Now, for f-1 (x),
f ( x ) = y = 3x - 7 or, y + 7 = 3 x or, y + 7 3 = x \begin{aligned}
f(x) \text{ = } y &\text{ = } \text{3x - 7} \
\text{or, y + 7} & \text{ = } 3x \
\text{or, }\frac{\text{y + 7}}{3} & \text{ = } x \
\end{aligned} f ( x ) = y or, y + 7 or, 3 y + 7 = 3x - 7 = 3 x = x
Interchanging the value of 'x' and 'y', we get,
x + 7 3 = y ∴ f − 1 ( x ) = x + 7 3 \begin{aligned}
\frac{\text{x + 7}}{3} & \text{ = } y \
\therefore f^{-1}(x) & \text{ = } \frac{\text{x + 7}}{3} \
\end{aligned} 3 x + 7 ∴ f − 1 ( x ) = y = 3 x + 7
Again, we have given,
f − 1 ( x ) = g(x) or, x + 7 3 = 4x - 2 3 or, 9 = 3x ∴ 3 = x \begin{aligned}
f^{-1}(x) &\text{ = } \text{g(x)} \\
\text{or, }\frac{\text{x + 7}}{\cancel{3}} &\text{ = } \frac{\text{4x - 2}}{\cancel{3}} \\
\text{or, 9} &\text{ = } \text{3x} \\
\therefore \text{3} &\text{ = } \text{x} \\
\end{aligned} f − 1 ( x ) or, 3 x + 7 or, 9 ∴ 3 = g(x) = 3 4x - 2 = 3x = x
Given that h(x) = x 2 - x \frac{x}{\text{2 - x}} 2 - x x and g(x) = ax - 5 are two functions. If goh(4) =
-13. FInd the value of a and g-1 (1).
Solution,
Given, h(x) = x 2 - x g(x) = ax - 5 goh(4) = -13 \begin{aligned}
\text{Given, }
\text{h(x)} &\text{ = }\frac{\text{x}}{\text{2 - x}} \\
\text{g(x)} &\text{ = }\text{ax - 5} \\
\text{goh(4)} &\text{ = }\text{-13} \\
\end{aligned} Given, h(x) g(x) goh(4) = 2 - x x = ax - 5 = -13
To find, a = ?, g-1 (1) = ?
Now, h(x) = x 2 - x or, h(4) = 4 2 - 4 = -2 \begin{aligned}
\text{Now, }
\text{h(x)} &\text{ = }\frac{\text{x}}{\text{2 - x}} \\
\text{or, h(4)} &\text{ = }\frac{\text{4}}{\text{2 - 4}} \\
&\text{ = }\text{-2} \\
\end{aligned} Now, h(x) or, h(4) = 2 - x x = 2 - 4 4 = -2
Again, goh(4) = -13 or, g(-2) = -13 or, -2a - 5 = -13 or, -2a = -13 + 5 ∴ a = 4 \begin{aligned}
\text{Again, }
\text{goh(4)} &\text{ = }\text{-13} \\
\text{or, g(-2)} &\text{ = }\text{-13} \\
\text{or, -2a - 5} &\text{ = }\text{-13} \\
\text{or, -2a} &\text{ = }\text{-13 + 5} \\
\therefore \text{a} &\text{ = }\text{4}
\end{aligned} Again, goh(4) or, g(-2) or, -2a - 5 or, -2a ∴ a = -13 = -13 = -13 = -13 + 5 = 4
Again, for g-1 (x),
g(x) = y = 4x - 5 or, y + 5 4 = x \begin{aligned}
\text{g(x)}\text{ = }y &\text{ = }\text{4x - 5} \
\text{or, } \frac{\text{y + 5}}{\text{4}} &\text{ = }\text{x} \
\end{aligned} g(x) = y or, 4 y + 5 = 4x - 5 = x
Interchanging the value of 'x' and 'y', we get,
or, y = x + 5 4 or, g − 1 ( x ) = x + 5 4 ∴ g − 1 ( 1 ) = 6 4 = 3 2 \begin{aligned}
\text{or, y} &\text{ = }\frac{\text{x + 5}}{\text{4}} \
\text{or, } g^{-1}(x) &\text{ = }\frac{\text{x + 5}}{\text{4}} \
\therefore g^{-1}(1) &\text{ = }\frac{\text{6}}{\text{4}}\text{ = }\frac{\text{3}}{\text{2}} \
\end{aligned} or, y or, g − 1 ( x ) ∴ g − 1 ( 1 ) = 4 x + 5 = 4 x + 5 = 4 6 = 2 3
If f(x) = 3x - 4 and f-1 g(x) = 3x + 2 3 \frac{\text{3x + 2}}{3} 3 3x + 2 , find g(x) and
f-1 ( 1 2 ) \left(\frac{1}{2}\right) ( 2 1 ) .
Solution,
Given, f(x) = 3x - 4 g(x) = a (let) f − 1 g ( x ) = 3x + 2 3 \begin{aligned}
\text{Given, }
\text{f(x)} &\text{ = }\text{3x - 4} \\
\text{g(x)} &\text{ = }\text{a (let)} \\
f^{-1}g(x) &\text{ = }\frac{\text{3x + 2}}{\text{3}} \\
\end{aligned} Given, f(x) g(x) f − 1 g ( x ) = 3x - 4 = a (let) = 3 3x + 2
To find, g(x) = ? f − 1 ( 1 2 ) = ? \begin{aligned}
\text{To find, }
\text{g(x)} &\text{ = }\text{?} \
f^{-1}\left(\frac{1}{2}\right) &\text{ = }\text{?} \
\end{aligned} To find, g(x) f − 1 ( 2 1 ) = ? = ?
For, f-1 (x),
f(x) = y = 3x - 4 or, y + 4 3 = x \begin{aligned}
\text{f(x)}\text{ = }\text{y} &\text{ = }\text{3x - 4} \
\text{or, } \frac{\text{y + 4}}{3} &\text{ = }\text{x} \
\end{aligned} f(x) = y or, 3 y + 4 = 3x - 4 = x
Interchanging the value of 'x' and 'y', we get,
or, x + 4 3 = y ∴ f − 1 ( x ) = x + 4 3 \begin{aligned}
\text{or, } \frac{\text{x + 4}}{3} &\text{ = }\text{y} \
\therefore f^{-1}(x) &\text{ = }\frac{\text{x + 4}}{3} \
\end{aligned} or, 3 x + 4 ∴ f − 1 ( x ) = y = 3 x + 4
∴ f − 1 ( 1 2 ) = 1 + 8 6 = 3 2 \therefore f^{-1}\left(\frac{1}{2}\right)\text{ = }\frac{\text{1 + 8}}{\text{6}} \text{ = }\frac{\text{3}}{\text{2}} ∴ f − 1 ( 2 1 ) = 6 1 + 8 = 2 3
Again,
f − 1 g ( x ) = 3x + 2 3 or, f − 1 ( a ) = 3x + 2 3 or, a + 4 3 = 3x + 2 3 or, a + 4 = 3x + 2 ∴ a = g(x) = 3x - 2 \begin{aligned}
f^{-1}g(x) &\text{ = }\frac{\text{3x + 2}}{\text{3}} \\
\text{or, } f^{-1}(a) &\text{ = }\frac{\text{3x + 2}}{\text{3}} \\
\text{or,}\frac{\text{a + 4}}{3} &\text{ = } \frac{\text{3x + 2}}{3} \\
\text{or, a + 4} &\text{ = }\text{3x + 2} \\
\therefore \text{a}\text{ = }\text{g(x)} &\text{ = }\text{3x - 2} \\
\end{aligned} f − 1 g ( x ) or, f − 1 ( a ) or, 3 a + 4 or, a + 4 ∴ a = g(x) = 3 3x + 2 = 3 3x + 2 = 3 3x + 2 = 3x + 2 = 3x - 2
If f(x) = 2x + 3, g(x) = x + 5 2 \frac{\text{x + 5}}{2} 2 x + 5 and ff(x) = g-1 (x), find the
value of x.
Solution,
Given, f(x) = 2x + 3 g(x) = x + 5 2 ff(x) = g − 1 ( x ) \begin{aligned}
\text{Given, f(x)}
&\text{ = } \text{2x + 3} \\
\text{g(x) } &\text{ = } \frac{\text{x + 5}}{\text{2}} \\
\text{ff(x)} &\text{ = } g^{-1}(x) \\
\end{aligned} Given, f(x) g(x) ff(x) = 2x + 3 = 2 x + 5 = g − 1 ( x )
To find, x = ?
Now, for g-1 (x),
g(x) = y = x + 5 2 or, 2y = x + 5 or, 2y - 5 = x \begin{aligned}
\text{g(x) } \text{ = } y &\text{ = } \frac{\text{x + 5}}{\text{2}} \\
\text{or, 2y} &\text{ = } \text{x + 5} \\
\text{or, 2y - 5} &\text{ = } \text{x} \\
\end{aligned} g(x) = y or, 2y or, 2y - 5 = 2 x + 5 = x + 5 = x
Interchanging the value of 'x' and 'y', we get,
or, 2x - 5 = y ∴ g − 1 ( x ) = 2x - 5 \begin{aligned}
\text{or, 2x - 5} &\text{ = } \text{y} \\
\therefore g^{-1}(x) &\text{ = } \text{ 2x - 5} \\
\end{aligned} or, 2x - 5 ∴ g − 1 ( x ) = y = 2x - 5
Again, we have given,
ff(x) = g − 1 ( x ) \text{ff(x)} \text{ = } g^{-1}(x) ff(x) = g − 1 ( x )
or, f(2x + 3) = 2x - 5 \text{or, f(2x + 3)} \text{ = } \text{2x - 5} or, f(2x + 3) = 2x - 5
or, 4x + 6 + 3 = 2x - 5 \text{or, 4x + 6 + 3} \text{ = } \text{2x - 5} or, 4x + 6 + 3 = 2x - 5
or, 4x + 9 + 5 = 2x \text{or, 4x + 9 + 5} \text{ = } \text{2x} or, 4x + 9 + 5 = 2x
or, -2x = 14 \text{or, -2x} \text{ = } \text{14} or, -2x = 14
∴ x = -7 \therefore \text{x} \text{ = } \text{-7} ∴ x = -7
If f(x) = 2x + 1, g(x) = 3x + 1 2 \frac{\text{3x + 1}}{2} 2 3x + 1 and ff(x) = g-1 (x), find the
value of x.
Solution,
Given, f(x) = 2x + 1 g(x) = 3x + 1 2 ff(x) = g − 1 ( x ) \begin{aligned}
\text{Given, f(x)}
&\text{ = } \text{2x + 1} \\
\text{g(x)} &\text{ = } \frac{\text{3x + 1}}{\text{2}} \\
\text{ff(x)} &\text{ = } g^{-1}(x) \\
\end{aligned} Given, f(x) g(x) ff(x) = 2x + 1 = 2 3x + 1 = g − 1 ( x )
To find, x = ?
Now, for g-1 (x),
g(x) = y = 3x + 1 2 or, 2y - 1 3 = x \begin{aligned}
\text{g(x)} \text{ = } y &\text{ = } \frac{\text{3x + 1}}{2} \\
\text{or, } \frac{\text{2y - 1}}{\text{3}} &\text{ = } \text{x} \\
\end{aligned} g(x) = y or, 3 2y - 1 = 2 3x + 1 = x
Interchanging the value of 'x' and 'y', we get,
or, y = 2x - 1 3 ∴ g − 1 ( x ) = 2x - 1 3 \begin{aligned}
\text{or, y} &\text{ = } \frac{\text{2x - 1}}{\text{3}} \\
\therefore g^{-1}(x) &\text{ = } \frac{\text{2x - 1}}{\text{3}}
\end{aligned} or, y ∴ g − 1 ( x ) = 3 2x - 1 = 3 2x - 1
Again, we have given,
ff(x) = g − 1 ( x ) \text{ff(x)} \text{ = } g^{-1}(x) ff(x) = g − 1 ( x )
or, f(2x + 1) = 2x - 1 3 \text{or, f(2x + 1)} \text{ = } \frac{\text{2x - 1}}{\text{3}} or, f(2x + 1) = 3 2x - 1
or, 2(2x + 1) + 1 = 2x - 1 3 \text{or, 2(2x + 1) + 1} \text{ = } \frac{\text{2x - 1}}{\text{3}} or, 2(2x + 1) + 1 = 3 2x - 1
or, 4x + 3 = 2x - 1 3 \text{or, 4x + 3} \text{ = } \frac{\text{2x - 1}}{\text{3}} or, 4x + 3 = 3 2x - 1
12x + 9 = 2x - 1 \text{12x + 9} \text{ = } \text{2x - 1} 12x + 9 = 2x - 1
12x + 10 = 2x \text{12x + 10} \text{ = } \text{2x} 12x + 10 = 2x
10x = -10 \text{10x} \text{ = } \text{-10} 10x = -10
∴ x = -1 \therefore \text{x} \text{ = } \text{-1} ∴ x = -1
If f(x) = x 3 + 2x \frac{x}{\text{3 + 2x}} 3 + 2x x and f(x) = f-1 (x), find the value of x.
Solution,
Given, f(x) = x 3 + 2x f(x) = f − 1 ( x ) \begin{aligned}
\text{Given, f(x)}
&\text{ = } \frac{\text{x}}{\text{3 + 2x}} \\
\text{f(x)} &\text{ = } f^{-1}(x) \\
\end{aligned} Given, f(x) f(x) = 3 + 2x x = f − 1 ( x )
To find, x = ?
Now, for f-1 (x),
f(x) = y = x 3 + 2x \text{f(x)} \text{ = } \text{y} \text{ = } \frac{\text{x}}{\text{3 + 2x}} f(x) = y = 3 + 2x x
or, 3y + 2xy = x \text{or, 3y + 2xy} \text{ = } \text{x} or, 3y + 2xy = x
or, 3y = x - 2xy \text{or, 3y} \text{ = } \text{x - 2xy} or, 3y = x - 2xy
or, 3y = x(1 - 2y) \text{or, 3y} \text{ = } \text{x(1 - 2y)} or, 3y = x(1 - 2y)
or, x = 3y 1 - 2y \text{or, x} \text{ = } \frac{\text{3y}}{\text{1 - 2y}} or, x = 1 - 2y 3y
Interchanging the value of 'x' and 'y', we get,
or, y = 3x 1 - 2x ∴ f − 1 ( x ) = 3x 1 - 2x \begin{aligned}
\text{or, y} &\text{ = } \frac{\text{3x}}{\text{1 - 2x}} \\
\therefore f^{-1}(x) &\text{ = } \frac{\text{3x}}{\text{1 - 2x}} \\
\end{aligned} or, y ∴ f − 1 ( x ) = 1 - 2x 3x = 1 - 2x 3x
Again, we have given,
f(x) = f − 1 ( x ) or, x 3 + 2x = 3x 1 - 2x or, x - 2 x 2 = 9x + 6 x 2 or, 8x + 8 x 2 = 0 or, 8x(1 + x) = 0 \begin{aligned}
\text{f(x)} &\text{ = } f^{-1}(x) \
\text{or, } \frac{\text{x}}{\text{3 + 2x}} &\text{ = } \frac{\text{3x}}{\text{1 - 2x}} \
\text{or, x - 2}x^2 &\text{ = } \text{9x + 6}x^2 \
\text{or, 8x + 8}x^2 &\text{ = } \text{0} \
\text{or, 8x(1 + x)} &\text{ = } \text{0} \
\end{aligned} f(x) or, 3 + 2x x or, x - 2 x 2 or, 8x + 8 x 2 or, 8x(1 + x) = f − 1 ( x ) = 1 - 2x 3x = 9x + 6 x 2 = 0 = 0
Either, x = 0
Or, x = -1
∴ x = -1, 0
If 3.f(x) = 4x + 5 and g(x) = 5x - 4, find the value of f-1 og-1 (1).
Solution,
Given, 3.f(x) = 4x + 5 f(x) = 4x + 5 3 g(x) = 5x - 4 \begin{aligned}
\text{Given, 3.f(x) }
&\text{ = } \text{4x + 5} \\
\text{f(x) } &\text{ = } \frac{\text{4x + 5}}{\text{3}} \\
\text{g(x)} &\text{ = } \text{5x - 4} \\
\end{aligned} Given, 3.f(x) f(x) g(x) = 4x + 5 = 3 4x + 5 = 5x - 4
To find, f-1 og-1 (1) = ?
For g-1 (x),
g(x) = y = 5x - 4 or, y + 4 = 5x or, y + 4 5 = x \begin{aligned}
\text{g(x)} = y &\text{ = } \text{5x - 4} \\
\text{or, y + 4} &\text{ = } \text{5x} \\
\text{or, } \frac{\text{y + 4}}{\text{5}} &\text{ = } \text{x} \\
\end{aligned} g(x) = y or, y + 4 or, 5 y + 4 = 5x - 4 = 5x = x
Interchanging the value of 'x' and 'y', we get,
or, y = x + 4 5 ∴ g − 1 ( x ) = x + 4 5 ∴ g − 1 ( x ) = 1 \begin{aligned}
\text{or, y} &\text{ = } \frac{\text{x + 4}}{\text{5}} \\
\therefore g^{-1}(x) &\text{ = } \frac{\text{x + 4}}{\text{5}} \\
\therefore g^{-1}(x) &\text{ = } \text{1}
\end{aligned} or, y ∴ g − 1 ( x ) ∴ g − 1 ( x ) = 5 x + 4 = 5 x + 4 = 1
For f-1 (x),
f(x) = y = 4x + 5 3 or, 3y - 5 4 = x \begin{aligned}
\text{f(x) } = \text{y} &\text{ = } \frac{\text{4x + 5}}{\text{3}} \\
\text{or, } \frac{\text{3y - 5}}{\text{4}} &\text{ = } \text{x} \\
\end{aligned} f(x) = y or, 4 3y - 5 = 3 4x + 5 = x
Interchanging the value of 'x' and 'y', we get,
or, y = 3x - 5 4 ∴ f − 1 ( x ) = 3x - 5 4 \begin{aligned}
\text{or, y} &\text{ = } \frac{\text{3x - 5}}{\text{4}} \\
\therefore f^{-1}(x) &\text{ = } \frac{\text{3x - 5}}{\text{4}} \\
\end{aligned} or, y ∴ f − 1 ( x ) = 4 3x - 5 = 4 3x - 5
Finally,
f − 1 g − 1 ( 1 ) = f − 1 ( 1 ) = 3(1) - 5 4 = -2 4 ∴ f − 1 g − 1 ( 1 ) = -1 2 \begin{aligned}
f^{-1}g^{-1}(1) &\text{ = } f^{-1}(1) \
&\text{ = } \frac{\text{3(1) - 5}}{\text{4}} \
&\text{ = } \frac{\text{-2}}{\text{4}} \
\therefore f^{-1}g^{-1}(1) &\text{ = } \frac{\text{-1}}{\text{2}} \
\end{aligned} f − 1 g − 1 ( 1 ) ∴ f − 1 g − 1 ( 1 ) = f − 1 ( 1 ) = 4 3(1) - 5 = 4 -2 = 2 -1
If f(x) = x2 - 2x, g(x) = 2x + 3 and fog-1 (x) = 3 then find the
value of 'x'.
Solution,
Given, f(x) = x 2 − 2x g(x) = 2x + 3 f o g − 1 ( x ) = 3 \begin{aligned}
\text{Given, f(x) }
&\text{ = } x^2 - \text{2x} \\
\text{g(x)} &\text{ = } \text{2x + 3} \\
fog^{-1}(x) &\text{ = } \text{3} \\
\end{aligned} Given, f(x) g(x) f o g − 1 ( x ) = x 2 − 2x = 2x + 3 = 3
To find, (x) = ?
Now, for g-1 (x),
g(x) = y = 2x + 3 or, y - 3 2 = x \begin{aligned}
\text{g(x)} = \text{y} &\text{ = } \text{2x + 3} \\
\text{or, } \frac{\text{y - 3}}{2} &\text{ = } \text{x} \\
\end{aligned} g(x) = y or, 2 y - 3 = 2x + 3 = x
Interchanging the value of 'x' and 'y', we get,
or, x - 3 2 = y ∴ g − 1 ( x ) = x - 3 2 \begin{aligned}
\text{or, } \frac{\text{x - 3}}{2} &\text{ = } \text{y} \\
\therefore g^{-1}(x) &\text{ = } \frac{\text{x - 3}}{2} \\
\end{aligned} or, 2 x - 3 ∴ g − 1 ( x ) = y = 2 x - 3
Again, we've given,
f o g − 1 ( x ) = 3 fog^{-1}(x) \text{ = } \text{3} f o g − 1 ( x ) = 3
or, f ( x - 3 2 ) = 3 \text{or, } \text{f}\left(\frac{\text{x - 3}}{\text{2}}\right) \text{ = } \text{3} or, f ( 2 x - 3 ) = 3
or, ( x - 3 2 ) 2 − 2 ( x - 3 2 ) = 3 \text{or, } \left(\frac{\text{x - 3}}{\text{2}}\right)^{2} - \cancel{2}\left(\frac{\text{x -
3}}{\cancel{2}}\right)
\text{ = } \text{3} or, ( 2 x - 3 ) 2 − 2 ( 2 x - 3 ) = 3
or, x 2 - 6x + 9 4 - x + 3 = 3 \text{or, } \frac{x^2 \text{- 6x + 9}}{4} \text{- x + } \cancel{3} \text{ = } \cancel{3} or, 4 x 2 - 6x + 9 - x + 3 = 3
or, x 2 - 6x + 9 = 4x \text{or, } x^2 \text{- 6x + 9} \text{ = } \text{4x} or, x 2 - 6x + 9 = 4x
or, x 2 - 6x + 9 - 4x = 0 \text{or, } x^2 \text{- 6x + 9 - 4x} \text{ = } \text{0} or, x 2 - 6x + 9 - 4x = 0
or, x 2 - 10x + 9 = 0 \text{or, } x^2 \text{- 10x + 9} \text{ = } \text{0} or, x 2 - 10x + 9 = 0
or, x 2 - 9x - x + 9 = 0 \text{or, } x^2 \text{- 9x - x + 9} \text{ = } \text{0} or, x 2 - 9x - x + 9 = 0
or, x(x - 9) -1(x + 9) = 0 \text{or, } \text{x(x - 9) -1(x + 9)} \text{ = } \text{0} or, x(x - 9) -1(x + 9) = 0
or, (x - 9)(x - 1) = 0 \text{or, } \text{(x - 9)(x - 1)} \text{ = } \text{0} or, (x - 9)(x - 1) = 0
∴ x = 1, 9 \therefore \text{x} \text{ = } \text{1, 9} ∴ x = 1, 9