If f(x) = 2x - 1 then find the value of ff(-1).
Here,
Given, f(x)ff(-1) = 2x - 1 = ?
Now,
ff(x)∴ff(-1) = f(2x - 1) = 2(2x - 1) - 1 = 4x - 3 = -4 - 3 = -7
If f(x) = 2x + 3 then find the value of ff(2).
Here,
Given, f(x)ff(-1) = 2x + 3 = ?
Now,
ff(x)∴ff(2) = f(2x + 3) = 2(2x + 3) + 3 = 4x + 9 = 8 + 9 = 17
If h(x) = 2x + 3 and g(x) = 3x - 2, find hog(5).
Solution,
Given, h(x)g(x) = 2x + 3 = 3x - 2
Now,
hog(x)∴hog(5) = h(3x - 2) = 2(3x - 2) + 3 = 6x - 4 + 3 = 6x - 1 = 30 - 1 = 29
If f(x) = 22x + 3, then find the value of f-1(x).
Solution,
Given, f(x) = y =
22x + 3
For f
-1(x),
yor, x=22x + 3=22y - 3
Interchanging the value of 'x' and 'y', we get,
y∴f−1(x)=22x - 3=22x - 3
If f(x) = x + 1 and g(x) = 2x + 1, find gof(x).
Solution,
Given,f(x)g(x)=x+1=2x+1
Now,
gof(x)∴gof(x)=g(x + 1)=2(x + 1) + 1=2x + 3
If f(x) = 3x - 2 and fog(x) = 6x - 2, find g(x).
Solution,
Given,f(x)fog(x)g(x)=3x−2=6x−2=a (let)
Now,
fog(x)or, f(a)or, 3a - 2or, 3aor, a∴g(x)=6x - 2=6x - 2=6x - 2=6x=2x=2x
If f(x) = 4x + 3 then find the value of f-1(4).
Solution,
Given,
f(x) = y = 4x + 3
To find,
f
-1(4) = ?
Now, for f-1(x)
yor,4y−3=4x + 3=x
Interchanging the value of 'x' and 'y', we get,
or,4x−3So, f−1(x)∴f−1(4)=y=4x−3=44−3=41
If f-1(x) = 2x - 3, find f(x).
Solution
Given, f
-1(x) = y = 2x - 3
To find, f(x) = ?
Now,
yor,2y+3=2x - 3=x
Interchanging the value of 'x' and 'y', we get,
or,2x+3∴f(x)=y=2x+3
If f-1(x) = 2x + 3, find f(x).
Solution,
Given, f
-1(x) = y =
2x + 3
To find, f(x) = ?
Now,
yor, 2y - 3=2x + 3=x
Interchanging the value of 'x' and 'y', we get,
or,2x - 3∴f(x)=y=2x - 3
If f(x) = 2x + 5 and g(x) = 3x - 1, find gof(x).
Solution,
Given,f(x)g(x)=2x+5=3x−1
Now,
gof(x)∴gof(x)=g(2x + 5)=3(2x + 5) - 1=6x + 15 - 1=6x + 14
If f(x) = 2x + 5 and g(x) = 2x - 5, prove that fog(x) is an identity function.
Here,
Given,f(x)g(x)=2x+5=2x - 5
To prove: gh(x) is an identity function.
Now,
fog(x)=f(2x - 5)=22(x - 5)+5=x
Here, fog(x) = x. So, fog(x) is an identity function.
If g(x) = 3x−2 and h(x) = 3x + 2, prove that gh(x) is identity function.
Here,
Given,g(x)h(x)=3x - 2=3x+2
To prove: gh(x) is an identity function.
Now,
gh(x)=g(3x+2)=33x + 2 - 2=33x=x
Here, gh(x) = x. So, gh(x) is an identity function.
If f(x) = 2x -3 and g(x) = x2 + 1, find the value of fog(3).
Solution,
Given, f(x)g(x)=2x - 3=x2 + 1
Now,
fog(x)∴fog(3)=f(x2 + 1)=2(x2 + 1) - 3=2x2 + 2 - 3=2x2 - 1=2(3)2−1=18−1=17
If g(x) = 4x - 2, find the value of g-1(-1).
Solution,
Given,
g(x) = y = 4x - 2
To find,
g
-1(-1) = ?
Now, for g-1(x)
yor, y + 2or,4y+2=4x - 2=4x=x
Interchanging the value of 'x' and 'y', we get,
or,4x+2So, g−1(x)∴g−1(−1)=y=4x+2=4−1+2=41
If the function f = {(1, 2), (2, 3), (3, 4)} and g = {(2, a), (4, c), (3, b)}, then show the composite function gof in arrow diagram and find it in ordered form.
Solution,
Given,
f = {(1, 2), (2, 3), (3, 4)}, g = {(2, a), (4, c), (3, b)}
Now, gof in arrow diagram,
Finally, gof in ordered pair form:
gof = {(1, a), (2, b), (3, c)}
If f(x) = 3x, g(x) = x + 2 and fog(x) = 18, find the value of x.
Solution,
Given, f(x)g(x)fog(x)=3x=x+2=18
To find: x = ?,
Now,
fog(x)or, f(x + 2)or, 3(x + 2)or, x + 2∴x=18=18=18=6=4
If f: x → 3x + b and ff(2) = 12, find the value of b.
Solution,
Given, f(x)ff(2)=3x + b=12
To find: b = ?,
Now,
f(x) = 3x + b
f(2) = 6 + b ---- (A)
Again,
ff(2)or, f(6 + b)or, x + 2∴x=12=12 [from (A)]=6=4
The range of the function f(x) = 4x - 5 is (-1, 7), find its domain.
Solution,
Given,
f(x) = 4x - 5
Range of f(x) = (-1, 7)
To find, Domain of f(x) = ?,
Now,
f(x) = 4x - 5
Put f(x) = -1
So, -1 = 4x - 5
or, 4 = 4x
∴ x = 1
Again, put f(x) = 7
12 = 4x
∴ x = 3
Hence, domain of f(x) = (1, 3).
Info: Range = f(x) = y & Domain = x.