Determinant, Inverse, and Solving Equations by Matrix Method
Write the definition of inverse matrix. In which condition the inverse matrix cannot be defined? Write it.
If the determinant of a matrix is 0, then inverse matrix is not defined.
If .C = , find the matrix C.
Let, C = [a, b]
Given,
.C =
or, .[a, b] =
or, =
Comparing the corresponding element of equal matrix, we get,
a = -2, b = 3
Hence, C = [a, b] = [-2, 3]
If × p = , find the matrix p.
Let, p = [a, b]
Given,.C = or, .[a, b] =
or, =
Comparing the corresponding element of equal matrix, we get,
a = 2, b = -1
Hence, p = [a, b] = [2, -1]
If A = and B = , Find AB.
A =
B =
AB = =
= <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo fence="true">[</mo><mtable rowspacing="0.16em" columnalign="center center" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo>−</mo><mn>21</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>6</mn></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>21</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo>−</mo><mn>11</mn></mrow></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow><annotation encoding="application/x-tex">\begin{bmatrix}
-21 & 6 \\
21 & -11 \\
\end{bmatrix}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.4em;vertical-align:-0.95em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">−</span><span class="mord">21</span></span></span><span style="top:-2.41em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">21</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.95em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">6</span></span></span><span style="top:-2.41em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">−</span><span class="mord">11</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.95em;"><span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span></span></span></span>
</span>
If = 0, find the value of x.
or, 6x = -24
∴ x = -4
If K = and |K| = 23 then find the value of m.
Given,
K =
|K| = 23
Now,
= 23
or, 2m - (-15) = 23
or, 2m + 15 = 23
or, 2m = 8
∴ m = 4
If matrix A = then find A-1.
Given:
A =
To find: A-1
Here, Adjoint of A =
Again, for determinant of A,
|A| =
= |20 - 21|
= -1.
So, A-1 exists.
Finally, We Know,
A-1 = Adjoint of A
=
Another method
You can also solve it using the formula AA-1 = IIf the inverse of the matrix is the matrix find the value of m.
Given,
A =
A-1 =
To find: m
Now, We have,
A.A-1 = I
or,
=
or, =
Equating the corresponding elements of equal matrices, we get,
or, 3m - 14 = 1
or, 3m = 15
∴ m = 5
Another method
Given,A =
A-1 =
To find: m
Now, Adjoint of A =
Again, for determinant of A,
|A| =
= 3m - 14
We know,
A-1 = Adjoint of A
or, =
Equating the corresponding elements of equal matrices, we get,
or, 3 =
or, 9m - 42 = 3
or, 9m = 45
∴ m = 5
If matrix A = , find AAT.
A =
Now,
AT =
Finally,
AAT =
=
=
If A = , B = and A2 = B, find the value of x.
Given,
A =
B =
A2 = B
Now,
=
or, =
Equating the corresponding elements of equal matrices, we get,
or, -6x - 3x = -9
or, 3 = 3x
∴x = 1
If the inverse of the matrix can not be defined, find the value of x.
Let, the given matrix is,
A =
According to question, inverse of A cannot be defined, so,
|A| = 0
or,
or, 2x - 12 = 0
∴ x = 6
If M = and |M| = 27 then find the value of K.
Given,
M =
|M| = 27
or, 5k = 45
∴ K = 9
If P = and K = , find PK.
Given,
P =
K =
Now,
PK =
=
=
If an inverse matrix of A is , find the matrix A.
A-1 =
Let A =
<p>
Now, We know,
A.A-1 = I or, =
or, <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo fence="true">[</mo><mtable rowspacing="0.16em" columnalign="center center" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>a</mi><mo>+</mo><mn>2</mn><mi>b</mi></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>3</mn><mi>a</mi><mo>+</mo><mn>4</mn><mi>b</mi></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>c</mi><mo>+</mo><mn>2</mn><mi>d</mi></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>3</mn><mi>c</mi><mo>+</mo><mn>4</mn><mi>d</mi></mrow></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow><annotation encoding="application/x-tex">\begin{bmatrix}
a + 2b & 3a + 4b \\
c + 2d & 3c + 4d \\
\end{bmatrix}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.4em;vertical-align:-0.95em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">2</span><span class="mord mathnormal">b</span></span></span><span style="top:-2.41em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">c</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">2</span><span class="mord mathnormal">d</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.95em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">3</span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">4</span><span class="mord mathnormal">b</span></span></span><span style="top:-2.41em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">3</span><span class="mord mathnormal">c</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mord">4</span><span class="mord mathnormal">d</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.95em;"><span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span></span></span></span> =
<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo fence="true">[</mo><mtable rowspacing="0.16em" columnalign="center center" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow><annotation encoding="application/x-tex">\begin{bmatrix}
1 & 0 \\
0 & 1 \\
\end{bmatrix}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.4em;vertical-align:-0.95em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span><span style="top:-2.41em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.95em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-2.41em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.95em;"><span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span></span></span></span>
</p>
<p>
Equating the corresponding elements of equal matrices, we get,
<span class="left">a + 2b = 1</span>
or, a = 1 - 2b ---- (i)
</p>
Also,
3a + 4b = 0
or, 3(1 - 2b) + 4b = 0 [From (i)]
or, 3 - 6b + 4b = 0
or, 3 - 2b = 0
∴ b =
∴ a = -2 [From (i)]
Similarly, c + 2d = 0 or, c = -2d ---- (ii)
Finally,
3c + 4d = 1
or, -6d + 4d = 1 [From (ii)]
∴ d =
∴ c = 1 [From (ii)]
Hence, A = =
If A = and B = , then prove that AB is an identity matrix.
A =
B =
Now,
AB =
=
=
If inverse of matrix A is A-1 = , find the matrix A.
Let, A =
Now, We Know,
A × A-1 = I
or,
=
or, =
Equating the corresponding elements of equal matrices, we get, 3a + 5b = 1 or, a = ---- (i)
Again,
2a + 4b = 0
or, 2 - 10b + 12b = 0 [From (i)]
or, 2 = -2b
∴ b = -1
∴ a = 2 [From (i)]
Similarly,
3c + 5d = 0
or, c = ---- (ii)
Again,
2c + 4d = 1
or, -10d + 12d = 3
or, 2d = 3
∴ d = 3/2
∴c = -15/6 = -5/2 [From (ii)]
Hence, A = =
Define inverse of a matrix. If A = find its inverse.
Inverse matrix: If A and B are two square matrices of same order, I is an identity matrix of same order and AB = BA = I then A and B are said to be the inverse of each other. The inverse of A is denoted by A-1.
Given,A =
Now, Adjoint of A =
Again, for determinant of A,
|A| =
= 5 - 8
= -3. So, A-1 exists.
Finally, We know,
A-1 = Adjoint of A
=
=
If D = , find the value of D2.
D =
Now,
D2 =
=
=
In which condition can two matrices be multiplied? State it. If P = (1 3 -4) and Q = , find the matrix QP.
If column of one matrix is equal to the row of another matrix then
Given,
P = (1 3 -4)
Q =
Now,
QP = (1 3 -4)
=
Find the value of x if the matrix has no inverse.
A =
If A has no inverse then,
|A| = 0
or, = 0
or, 5x - 32 = 0
∴ x = 32/5
If A = and B = , show that AB is a null matrix.
A =
B =
Now,
AB =
=
=
If the determinant of the matrix M = is 20, find the value of p.
M =
According to question,
|M| = 20
or, = 20
or, -60 + 8p = 20
or, 8p = 80
∴ p = 10
If = , find the values of a and b.
Equating the corresponding elements of equal matrices, we get,
or, -4 + 5a = 6
or, 5a = 10
∴ a = 2
Similarly,
or, -2b + 20 = 0
∴ b = 10
If A = , B = and |BA| = -5, find the value of m.
A =
B =
|BA| = -5
Now,
BA =
=
= --- (i)
Finally,
|BA| = -5
or, = -5 [using (i)]
or, 7 + 21m - 22 - 11m = -5
or, 10m = 10
∴ m = 1
If E = and |E| = 22, find the value of a.
E =
|E| = 22
Now,
|E| = 22
or, 22 = 6a - 8
or, 30 = 6a
∴ a = 5
If = , find the value of .
Equating the corresponding elements of equal matrices, we get,
or, -2x = -2
∴ x = 1
Similarly, -5y = 10 ∴ y = 2
Hence, =
If = find the value of x and y.
or, =
Equating the corresponding elements of equal matrices, we get,
or, x + 1 = 2
∴ x = 1
Again,
or, y - 2 = -3
∴ y = -1
If the inverse of the matrix is the matrix , calculate the values of x and y.
And, A-1 =
Now, We have,
A.A-1 = I
or,
=
or, =
Equating the corresponding elements of equal matrices, we get,
or, 18x - 35 = 1
or, 18x = 36
∴ x = 2
Similarly,
or, 5y + 36 = 1
or, 5y = -35
∴ y = -7