Cramer's Rule

In the equation a1x + b1y = c1 and a2x + b2y = c2, according to Crammer's rule,
a) Write D in determinant form.
b) Write Dx in determinant form.
c) Write Dy in determinant form.
d) What is necessary condition for obtaining unique solution?

Given,
a1x + b1y = c1
a2x + b2y = c2
  1. D = a1b1a2b2\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}
  2. Dx = c1b1c2b2\begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix}
  3. DDy = a1c1a2c2\begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}
  4. The necessary condition for obtaining unique solution is that the coefficient determinant should be non-zero.
    i.e. a1b1a2b2\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} ≠ 0

Solve the following system of linear equations using Cramer's rule:

2x - y = 3 and y + 3x = 7

Given,
2x - y = 3
y + 3x = 7

Now, From above equation,
D = 2131\begin{vmatrix} 2 & -1 \\ 3 & 1 \end{vmatrix} = 2 + 3 = 5
Dx = 3171\begin{vmatrix} 3 & -1 \\ 7 & 1 \end{vmatrix} = 3 + 7 = 10
Dy = 2337\begin{vmatrix} 2 & 3 \\ 3 & 7 \end{vmatrix} = 14 - 9 = 5

Finally,
x = DxD\frac{D_x}{D} = 105\frac{10}{5} = 2
y = DyD\frac{D_y}{D} = 55\frac{5}{5} = 1

Hence, x = 2 and y = 1.

y = 2x and x - 32\frac 32y + 1 = 0

Given, y - 2x or, 2x - y = 0 --- (i) x - 32\frac 32y = -1 --- (ii)

Now, From above equation,
D = 21132\begin{vmatrix} 2 & -1 \\ 1 & \frac{-3}{2} \end{vmatrix} = -3 + 1 = -2
Dx = 01132\begin{vmatrix} 0 & -1 \\ 1 & \frac{-3}{2} \end{vmatrix} = 0 - 1 = 1
Dy = 2011\begin{vmatrix} 2 & 0 \\ 1 & -1 \end{vmatrix} = -2

Finally,
x = DxD\frac{D_x}{D} = 12\frac{1}{2}
y = DyD\frac{D_y}{D} = 1

Hence, x = 12\frac{1}{2} and y = 1.

4x\frac 4x + 5y\frac 5y = 28 and 7x\frac 7x + 3y\frac 3y = 67

Given,
4x\frac 4x + 5y\frac 5y = 28
7x\frac 7x + 3y\frac 3y = 67

Now, From above equation,
D = 4573\begin{vmatrix} 4 & 5 \\ 7 & 3 \end{vmatrix} = 12 - 35 = -23
Dx = 285673\begin{vmatrix} 28 & 5 \\ 67 & 3 \end{vmatrix} = 84 - 335 = -251
Dy = 428767\begin{vmatrix} 4 & 28 \\ 7 & 67 \end{vmatrix} = 268 - 196 = 72

Finally,
1x\frac 1x = DxD\frac{D_x}{D} = 25123\frac{-251}{-23}x = 23251\frac{23}{251}
1y\frac 1y = DyD\frac{D_y}{D} = 7223\frac{72}{-23}y = 2372\frac{-23}{72}

Hence, x = 23251\frac{23}{251} and y = 2372\frac{-23}{72}

4(x - 1) + 5(y + 2) = 10 and 5(x - 1) - 3(y + 2) + 6 = 0

Given, 4(x - 1) + 5(y + 2) = 10 or, 4x - 4 + 5y + 10 = 10
4x + 5y = 4 --- (i) 5(x - 1) - 3(y + 2) + 6 = 0 or, 8x - 5 - 3y - 6 + 6 = 0 5x - 3y = 5 --- (ii)

Now, From above equation,
D = 4553\begin{vmatrix} 4 & 5 \\ 5 & -3 \end{vmatrix} = -12 - 25 = -37
Dx = 4553\begin{vmatrix} 4 & 5 \\ 5 & -3 \end{vmatrix} = -12 - 25 = -37
Dy = 4554\begin{vmatrix} 4 & 5 \\ 5 & 4 \end{vmatrix} = 0

Finally,
x = DxD\frac{D_x}{D} = 1
y = DyD\frac{D_y}{D} = 037\frac{0}{-37} = 0

Hence, x = 1 and y = 0.

3xy - 10y = 6x and 5xy + 3x = 21y

Given, 3xy - 10y = 6x or, 6x + 10y = 3xy
6y\frac 6y + 10x\frac{10}{x} = 3 (dividing both sides by xy) --- (i) 5xy + 3x = 21y or, 21y - 3x = 5xy 21x\frac{21}{x} - 3y\frac 3y = 5 (dividing both sides by xy) --- (ii)

Now, From above equation,
D = 106213\begin{vmatrix} 10 & 6 \\ 21 & -3 \end{vmatrix} = -30 - 126 = -156
Dx = 3653\begin{vmatrix} 3 & 6 \\ 5 & -3 \end{vmatrix} = -9 - 30 = -39
Dy = 103215\begin{vmatrix} 10 & 3 \\ 21 & 5 \end{vmatrix} = 50 - 63 = -13

Finally,
1x\frac 1x = DxD\frac{D_x}{D} = 39156\frac{-39}{-156} = 14\frac 14x = 4
1y\frac 1y = DyD\frac{D_y}{D} = 13156\frac{-13}{-156} = 112\frac{1}{12}y = 12

Hence, x = 4 and y = 12.

3y + 4x = 2xy and 18y - 4x = 5xy

Given, 3y + 4x = 2xy or, 3x\frac 3x + 4y\frac 4y = 2 (dividing both sides by xy) --- (i) 18y - 4x = 5xy or, 18x\frac{18}{x} - 4y\frac 4y = 5 (dividing both sides by xy) --- (ii)

Now, From above equation,
D = 34184\begin{vmatrix} 3 & 4 \\ 18 & -4 \end{vmatrix} = -12 - 72 = -84
Dx = 2454\begin{vmatrix} 2 & 4 \\ 5 & -4 \end{vmatrix} = -8 - 20 = -28
Dy = 32185\begin{vmatrix} 3 & 2 \\ 18 & 5 \end{vmatrix} = 15 - 36 = -21

Finally,
1x\frac 1x = DxD\frac{D_x}{D} = 2884\frac{-28}{-84} = 13\frac 13x = 3
1y\frac 1y = DyD\frac{D_y}{D} = 2184\frac{-21}{-84} = 14\frac 14y = 4

Hence, x = 3 and y = 4.