In the equation a1 x + b1 y = c1 and a2 x + b2 y = c2 , according to Crammer's rule,
a) Write D in determinant form.
b) Write Dx in determinant form.
c) Write Dy in determinant form.
d) What is necessary condition for obtaining unique solution?
Given,
a
1 x + b
1 y = c
1 a
2 x + b
2 y = c
2
D = ∣ a 1 b 1 a 2 b 2 ∣ \begin{vmatrix}
a_1 & b_1 \\
a_2 & b_2
\end{vmatrix} a 1 a 2 b 1 b 2
Dx =
∣ c 1 b 1 c 2 b 2 ∣ \begin{vmatrix}
c_1 & b_1 \\
c_2 & b_2
\end{vmatrix} c 1 c 2 b 1 b 2
DDy =
∣ a 1 c 1 a 2 c 2 ∣ \begin{vmatrix}
a_1 & c_1 \\
a_2 & c_2
\end{vmatrix} a 1 a 2 c 1 c 2
The necessary condition for obtaining unique solution is that the coefficient determinant should be non-zero.
i.e. ∣ a 1 b 1 a 2 b 2 ∣ \begin{vmatrix}
a_1 & b_1 \\
a_2 & b_2
\end{vmatrix} a 1 a 2 b 1 b 2 ≠ 0
Solve the following system of linear equations using Cramer's rule:
2x - y = 3 and y + 3x = 7
Given,
2x - y = 3
y + 3x = 7
Now, From above equation,
D =
∣ 2 − 1 3 1 ∣ \begin{vmatrix}
2 & -1 \\
3 & 1
\end{vmatrix} 2 3 − 1 1 = 2 + 3 = 5
Dx =
∣ 3 − 1 7 1 ∣ \begin{vmatrix}
3 & -1 \\
7 & 1
\end{vmatrix} 3 7 − 1 1 = 3 + 7 = 10
Dy =
∣ 2 3 3 7 ∣ \begin{vmatrix}
2 & 3 \\
3 & 7
\end{vmatrix} 2 3 3 7 = 14 - 9 = 5
Finally,
x = D x D \frac{D_x}{D} D D x = 10 5 \frac{10}{5} 5 10 = 2
y = D y D \frac{D_y}{D} D D y = 5 5 \frac{5}{5} 5 5 = 1
Hence,
x = 2 and
y = 1.
y = 2x and x - 3 2 \frac 32 2 3 y + 1 = 0
Given,
y - 2x
or, 2x - y = 0 --- (i)
x - 3 2 \frac 32 2 3 y = -1 --- (ii)
Now, From above equation,
D =
∣ 2 − 1 1 − 3 2 ∣ \begin{vmatrix}
2 & -1 \\
1 & \frac{-3}{2}
\end{vmatrix} 2 1 − 1 2 − 3 = -3 + 1 = -2
Dx =
∣ 0 − 1 1 − 3 2 ∣ \begin{vmatrix}
0 & -1 \\
1 & \frac{-3}{2}
\end{vmatrix} 0 1 − 1 2 − 3 = 0 - 1 = 1
Dy =
∣ 2 0 1 − 1 ∣ \begin{vmatrix}
2 & 0 \\
1 & -1
\end{vmatrix} 2 1 0 − 1 = -2
Finally,
x = D x D \frac{D_x}{D} D D x = 1 2 \frac{1}{2} 2 1
y = D y D \frac{D_y}{D} D D y = 1
Hence, x = 1 2 \frac{1}{2} 2 1 and y = 1.
4 x \frac 4x x 4 + 5 y \frac 5y y 5 = 28 and
7 x \frac 7x x 7 + 3 y \frac 3y y 3 = 67
Given,
4 x \frac 4x x 4 +
5 y \frac 5y y 5 = 28
7 x \frac 7x x 7 +
3 y \frac 3y y 3 = 67
Now, From above equation,
D =
∣ 4 5 7 3 ∣ \begin{vmatrix}
4 & 5 \\
7 & 3
\end{vmatrix} 4 7 5 3 = 12 - 35 = -23
Dx =
∣ 28 5 67 3 ∣ \begin{vmatrix}
28 & 5 \\
67 & 3
\end{vmatrix} 28 67 5 3 = 84 - 335 = -251
Dy =
∣ 4 28 7 67 ∣ \begin{vmatrix}
4 & 28 \\
7 & 67
\end{vmatrix} 4 7 28 67 = 268 - 196 = 72
Finally,
1 x \frac 1x x 1 = D x D \frac{D_x}{D} D D x = − 251 − 23 \frac{-251}{-23} − 23 − 251 ⇒ x = 23 251 \frac{23}{251} 251 23
1 y \frac 1y y 1 = D y D \frac{D_y}{D} D D y = 72 − 23 \frac{72}{-23} − 23 72 ⇒ y = − 23 72 \frac{-23}{72} 72 − 23
Hence, x = 23 251 \frac{23}{251} 251 23 and y = − 23 72 \frac{-23}{72} 72 − 23
4(x - 1) + 5(y + 2) = 10 and 5(x - 1) - 3(y + 2) + 6 = 0
Given,
4(x - 1) + 5(y + 2) = 10
or, 4x - 4 + 5y + 10 = 10
4x + 5y = 4 --- (i)
5(x - 1) - 3(y + 2) + 6 = 0
or, 8x - 5 - 3y - 6 + 6 = 0
5x - 3y = 5 --- (ii)
Now, From above equation,
D =
∣ 4 5 5 − 3 ∣ \begin{vmatrix}
4 & 5 \\
5 & -3
\end{vmatrix} 4 5 5 − 3 = -12 - 25 = -37
Dx =
∣ 4 5 5 − 3 ∣ \begin{vmatrix}
4 & 5 \\
5 & -3
\end{vmatrix} 4 5 5 − 3 = -12 - 25 = -37
Dy =
∣ 4 5 5 4 ∣ \begin{vmatrix}
4 & 5 \\
5 & 4
\end{vmatrix} 4 5 5 4 = 0
Finally,
x = D x D \frac{D_x}{D} D D x = 1
y = D y D \frac{D_y}{D} D D y = 0 − 37 \frac{0}{-37} − 37 0 = 0
Hence,
x = 1 and
y = 0.
3xy - 10y = 6x and 5xy + 3x = 21y
Given,
3xy - 10y = 6x
or, 6x + 10y = 3xy
6 y \frac 6y y 6 + 10 x \frac{10}{x} x 10 = 3 (dividing both sides by xy) --- (i)
5xy + 3x = 21y
or, 21y - 3x = 5xy
21 x \frac{21}{x} x 21 - 3 y \frac 3y y 3 = 5 (dividing both sides by xy) --- (ii)
Now, From above equation,
D =
∣ 10 6 21 − 3 ∣ \begin{vmatrix}
10 & 6 \\
21 & -3
\end{vmatrix} 10 21 6 − 3 = -30 - 126 = -156
Dx =
∣ 3 6 5 − 3 ∣ \begin{vmatrix}
3 & 6 \\
5 & -3
\end{vmatrix} 3 5 6 − 3 = -9 - 30 = -39
Dy =
∣ 10 3 21 5 ∣ \begin{vmatrix}
10 & 3 \\
21 & 5
\end{vmatrix} 10 21 3 5 = 50 - 63 = -13
Finally,
1 x \frac 1x x 1 = D x D \frac{D_x}{D} D D x = − 39 − 156 \frac{-39}{-156} − 156 − 39 = 1 4 \frac 14 4 1 ⇒ x = 4
1 y \frac 1y y 1 = D y D \frac{D_y}{D} D D y = − 13 − 156 \frac{-13}{-156} − 156 − 13 = 1 12 \frac{1}{12} 12 1 ⇒ y = 12
Hence,
x = 4 and
y = 12.
3y + 4x = 2xy and 18y - 4x = 5xy
Given,
3y + 4x = 2xy
or,
3 x \frac 3x x 3 +
4 y \frac 4y y 4 = 2 (dividing both sides by xy) --- (i)
18y - 4x = 5xy
or,
18 x \frac{18}{x} x 18 -
4 y \frac 4y y 4 = 5 (dividing both sides by xy) --- (ii)
Now, From above equation,
D =
∣ 3 4 18 − 4 ∣ \begin{vmatrix}
3 & 4 \\
18 & -4
\end{vmatrix} 3 18 4 − 4 = -12 - 72 = -84
Dx =
∣ 2 4 5 − 4 ∣ \begin{vmatrix}
2 & 4 \\
5 & -4
\end{vmatrix} 2 5 4 − 4 = -8 - 20 = -28
Dy =
∣ 3 2 18 5 ∣ \begin{vmatrix}
3 & 2 \\
18 & 5
\end{vmatrix} 3 18 2 5 = 15 - 36 = -21
Finally,
1 x \frac 1x x 1 = D x D \frac{D_x}{D} D D x = − 28 − 84 \frac{-28}{-84} − 84 − 28 = 1 3 \frac 13 3 1 ⇒ x = 3
1 y \frac 1y y 1 = D y D \frac{D_y}{D} D D y = − 21 − 84 \frac{-21}{-84} − 84 − 21 = 1 4 \frac 14 4 1 ⇒ y = 4
Hence,
x = 3 and
y = 4.