Volume of Pyramid

Question 1

Find the volume of square based pyramid in the given figure alongside.

Square-based pyramid diagram showing base side 16 cm and vertical height 6 cm

Solution:

Given information:

  • Length of the side of base (a) = 16 cm
  • Vertical height (h) = 6 cm
  • Volume of pyramid (V) = ?

Step 1: Calculate the area of base

We know that area of base (A) = a2a^2

Area of base (A)=a2=(16)2=256 cm2\text{Area of base (A)} = a^2 = (16)^2 = 256 \text{ cm}^2

Step 2: Calculate the volume of pyramid

We know that volume of pyramid (V) = 13×A×h\frac{1}{3} \times A \times h

Substituting the values:

Volume (V)=13×256×6\text{Volume (V)} = \frac{1}{3} \times 256 \times 6 =15363= \frac{1536}{3} =512 cm3= 512 \text{ cm}^3

Final Answer:

Hence, the volume of the pyramid is 512 cm³.

Verification:

  • Base area: a2=162=256 cm2a^2 = 16^2 = 256 \text{ cm}^2
  • Volume calculation: V=13×256×6=15363=512 cm3V = \frac{1}{3} \times 256 \times 6 = \frac{1536}{3} = 512 \text{ cm}^3
  • Unit check: Area (cm²) × Height (cm) ÷ 3 = Volume (cm³) ✓

Volume formula for square-based pyramid:

  • General formula: V=13×Base Area×HeightV = \frac{1}{3} \times \text{Base Area} \times \text{Height}
  • For square base: V=13×a2×hV = \frac{1}{3} \times a^2 \times h where aa is base side and hh is vertical height
  • Alternative form: V=a2h3V = \frac{a^2 h}{3}

Key concepts:

  • Pyramid volume: Always one-third of the corresponding prism volume
  • Base area: For square base, simply square the side length
  • Vertical height: The perpendicular distance from apex to base center
  • Units: Volume is always in cubic units (length³)

Note: The volume of any pyramid is exactly one-third the volume of a prism with the same base and height. This is a fundamental relationship in solid geometry that applies to pyramids of any base shape.

📺 View YouTube Video

Question 2

The volume of a square based pyramid is 384 cm³ and the length of the side of base is 12 cm. Find the lateral surface area of the pyramid.

Solution:

Given information:

  • Volume of pyramid (V) = 384 cm³
  • Length of the side of base (a) = 12 cm
  • Lateral surface area = ?

Step 1: Find the vertical height (h)

We know that volume of the pyramid (V) = 13×a2×h\frac{1}{3} \times a^2 \times h

Substituting the given values:

384=13×(12)2×h384 = \frac{1}{3} \times (12)^2 \times h 384=13×144×h384 = \frac{1}{3} \times 144 \times h 384=144h3384 = \frac{144h}{3} 384×3144=h\frac{384 \times 3}{144} = h h=8h = 8 cm

∴ The vertical height (h) = 8 cm

Step 2: Find the slant height (l)

Using the relationship: l2=h2+(a2)2l^2 = h^2 + \left(\frac{a}{2}\right)^2

Substituting the values:

l2=82+(122)2l^2 = 8^2 + \left(\frac{12}{2}\right)^2 l2=64+36l^2 = 64 + 36 l2=100l^2 = 100 l=10l = 10 cm

∴ The slant height (l) = 10 cm

Step 3: Calculate lateral surface area

Lateral surface area (LSA) = 2al=2×12×10=2402al = 2 \times 12 \times 10 = 240 cm²

Final Answer:

Hence, the lateral surface area of the pyramid is 240 cm².

Verification:

  • Volume check: V=13×122×8=11523=384 cm3V = \frac{1}{3} \times 12^2 \times 8 = \frac{1152}{3} = 384 \text{ cm}^3
  • Slant height check: l2=h2+(a2)2=82+62=64+36=100l^2 = h^2 + \left(\frac{a}{2}\right)^2 = 8^2 + 6^2 = 64 + 36 = 100l=10l = 10 cm ✓
  • Lateral surface area: LSA=2al=2×12×10=240 cm2LSA = 2al = 2 \times 12 \times 10 = 240 \text{ cm}^2
  • Pythagorean triple: 6-8-10 triangle (scaled 3-4-5) ✓

Problem-solving sequence:

  • Step 1: Use volume formula to find vertical height from given volume and base
  • Step 2: Apply Pythagorean theorem to find slant height from vertical height
  • Step 3: Calculate lateral surface area using slant height and base perimeter

Key relationships used:

  • Volume formula: V=13×a2×hV = \frac{1}{3} \times a^2 \times h (base area × height ÷ 3)
  • Pythagorean relationship: l2=h2+(a2)2l^2 = h^2 + \left(\frac{a}{2}\right)^2 (slant height, vertical height, half-base)
  • Lateral surface area: LSA=2al\text{LSA} = 2al (perimeter × slant height ÷ 2)

Note: This is a reverse problem where we work backwards from volume to find height, then use geometric relationships to find slant height and finally lateral surface area. The 6-8-10 right triangle formed is a common Pythagorean triple that provides easy verification.

📺 View YouTube Video

Question 3

Find the volume of a square based pyramid if its total surface area is 96 cm² and the length of the side of base is 6 cm.

Square-based pyramid diagram showing total surface area 96 cm² and base side 6 cm

Solution:

Given information:

  • Total surface area (TSA) = 96 cm²
  • Length of the side of base (a) = 6 cm
  • Volume of pyramid (V) = ?

Step 1: Find the slant height (l)

According to the formula, total surface area (TSA) = a2+2ala^2 + 2al

Substituting the given values:

96=62+2×6×l96 = 6^2 + 2 \times 6 \times l 96=36+12l96 = 36 + 12l 9636=12l96 - 36 = 12l 60=12l60 = 12l l=6012=5l = \frac{60}{12} = 5 cm

∴ The slant height (l) = 5 cm

Step 2: Find the vertical height (h)

Using the relationship: l2=h2+(a2)2l^2 = h^2 + \left(\frac{a}{2}\right)^2

Substituting the values:

52=h2+(62)25^2 = h^2 + \left(\frac{6}{2}\right)^2 25=h2+925 = h^2 + 9 259=h225 - 9 = h^2 h2=16h^2 = 16 h=4h = 4 cm

∴ The vertical height (h) = 4 cm

Step 3: Calculate the volume of pyramid

Volume of pyramid (V) = 13×area of base×height\frac{1}{3} \times \text{area of base} \times \text{height}

Substituting the values:

V=13×62×4V = \frac{1}{3} \times 6^2 \times 4 =13×36×4= \frac{1}{3} \times 36 \times 4 =1443= \frac{144}{3} =48= 48 cm³

Final Answer:

Hence, the volume of the pyramid is 48 cm³.

Verification:

  • Total surface area check: TSA=a2+2al=62+2×6×5=36+60=96 cm2TSA = a^2 + 2al = 6^2 + 2 \times 6 \times 5 = 36 + 60 = 96 \text{ cm}^2
  • Pythagorean relationship: l2=h2+(a2)2=42+32=16+9=25=52l^2 = h^2 + \left(\frac{a}{2}\right)^2 = 4^2 + 3^2 = 16 + 9 = 25 = 5^2
  • Volume calculation: V=13×36×4=1443=48 cm3V = \frac{1}{3} \times 36 \times 4 = \frac{144}{3} = 48 \text{ cm}^3
  • Pythagorean triple: 3-4-5 triangle (classic Pythagorean triple) ✓

Problem-solving approach:

  • Step 1: Use total surface area formula to find slant height from given TSA and base
  • Step 2: Apply Pythagorean theorem to find vertical height from slant height
  • Step 3: Calculate volume using base area and vertical height

Key formulas used:

  • Total surface area: TSA=a2+2al\text{TSA} = a^2 + 2al (base area + lateral surface area)
  • Pythagorean relationship: l2=h2+(a2)2l^2 = h^2 + \left(\frac{a}{2}\right)^2 (right triangle formed)
  • Volume formula: V=13×a2×hV = \frac{1}{3} \times a^2 \times h (pyramid volume)

Geometric insight:

  • Surface area constraint: Given TSA provides direct path to slant height
  • Right triangle formation: Vertical height, half-base (3 cm), and slant height (5 cm) form 3-4-5 triangle
  • Classic Pythagorean triple: The 3-4-5 triangle is the most common right triangle in geometry

Note: This problem demonstrates the interconnected nature of pyramid measurements. Starting with total surface area, we can systematically find slant height, then vertical height, and finally volume. The appearance of the 3-4-5 Pythagorean triple makes verification straightforward.

📺 View YouTube Video