Scalar Product

If p\overrightarrow{p}.q\overrightarrow{q} = 6, q\vert \overrightarrow{q} \vert = 23\sqrt 3 unit and the angle between p\overrightarrow{p} and q\overrightarrow{q} is 30°, find the length of p\overrightarrow{p}.

Given,
q\vert \overrightarrow{q} \vert = 23\sqrt 3
p\overrightarrow{p}.q\overrightarrow{q} = 6
p\vert \overrightarrow{p} \vert = ?

Let, θ = 30° be the angle between given vector. Then from cosine angle, cosθ = p.qpq\frac{\overrightarrow{p} . \overrightarrow{q}}{\vert \overrightarrow{p} \vert \vert \overrightarrow{q} \vert} or, cos30° = 6p23\frac{6}{\vert \overrightarrow{p} \vert 2\sqrt 3}
or, p\vert \overrightarrow{p} \vert = 632×23\frac{6}{\frac{\sqrt 3}{2} \times 2\sqrt 3}
p\vert \overrightarrow{p} \vert = 2 unit

If a\vert \overrightarrow{a} \vert = 4, b\vert \overrightarrow{b} \vert = 5 and a.b\overrightarrow{a} . \overrightarrow{b} = 10, then find the angle between a\overrightarrow{a} and b\overrightarrow{b}.

Given,
a\vert \overrightarrow{a} \vert = 4
b\vert \overrightarrow{b} \vert = 5
a.b\overrightarrow{a} . \overrightarrow{b} = 10

Let, θ be the angle between given vector. Then from cosine angle,
cosθ = a.bab\frac{\overrightarrow{a} . \overrightarrow{b}}{\vert \overrightarrow{a} \vert \vert \overrightarrow{b} \vert} = 1020\frac{10}{20} = cos60°

∴ θ = 60°

If a\vert \overrightarrow{a} \vert = 33\sqrt 3, b\vert \overrightarrow{b} \vert = 4 and angle between a\vert \overrightarrow{a} \vert and b\vert \overrightarrow{b} \vert, θ = 60° then find the value of a.b\overrightarrow{a}.\overrightarrow{b}.

Given,
a\vert \overrightarrow{a} \vert = 33\sqrt 3
a\vert \overrightarrow{a} \vert = 4
Angle between a\vert \overrightarrow{a} \vert amd b\vert \overrightarrow{b} \vert, θ = 60°

Now, from cosine angle between two vectors, cosθ = a.bab\frac{\overrightarrow{a} . \overrightarrow{b}}{\vert \overrightarrow{a} \vert \vert \overrightarrow{b} \vert} or, cos60° = a.b123\frac{\overrightarrow{a} . \overrightarrow{b}}{12\sqrt{3}}
or, 1232\frac{12\sqrt{3}}{2} = a.b\overrightarrow{a} . \overrightarrow{b}
a.b\overrightarrow{a} . \overrightarrow{b} = 63\sqrt3

10i\overrightarrow{i} - 7j\overrightarrow{j} and ai\overrightarrow{i} + 10j\overrightarrow{j} are perpendicular to each other, find the value of a.

Let,
a\overrightarrow{a} = 10i\overrightarrow{i} - 7j\overrightarrow{j}
b\overrightarrow{b} = ai\overrightarrow{i} + 10j\overrightarrow{j}

Since, a\overrightarrow{a} is perpendicular to b\overrightarrow{b}, a.b\overrightarrow{a} . \overrightarrow{b} = 0 or, (10i\overrightarrow{i} - 7j\overrightarrow{j}).(ai\overrightarrow{i} + 10j\overrightarrow{j}) = 0
or, 10a(i\overrightarrow{i})2 + 100(i.j\overrightarrow{i}.\overrightarrow{j}) - 7a(j.i\overrightarrow{j}.\overrightarrow{i}) - 70(j\overrightarrow{j})2 = 0
We know, i\overrightarrow{i}.i\overrightarrow{i} = 1, j\overrightarrow{j}.j\overrightarrow{j} = 1, i\overrightarrow{i}.j\overrightarrow{j} = j\overrightarrow{j}.i\overrightarrow{i} = 0
so, 10a + 0 - 0 - 70 = 0
∴ a = 7.

If a\overrightarrow{a} = 4i\overrightarrow{i} + 2j\overrightarrow{j} and b\overrightarrow{b} = -i\overrightarrow{i} + 2j\overrightarrow{j}, then find the angle between a\overrightarrow{a} and b\overrightarrow{b}.

Here,
a\overrightarrow{a} = 4i\overrightarrow{i} + 2j\overrightarrow{j}
b\overrightarrow{b} = -i\overrightarrow{i} + 2j\overrightarrow{j}

Now,
a.b\overrightarrow{a} . \overrightarrow{b} = (4i\overrightarrow{i} + 2j\overrightarrow{j}) . (-i\overrightarrow{i} + 2j\overrightarrow{j}) = -4 + 4 = 0

Let, θ be the angle between given vector. Then from cosine angle,
cosθ = a.bab\frac{\overrightarrow{a} . \overrightarrow{b}}{\vert \overrightarrow{a} \vert \vert \overrightarrow{b} \vert} = 0ab\frac{0}{\vert \overrightarrow{a} \vert \vert \overrightarrow{b} \vert} = cos90°

∴ θ = 90°

If b\vert \overrightarrow{b} \vert = 6, a.b\overrightarrow{a}.\overrightarrow{b} = 12 and angle between a\overrightarrow{a} and b\overrightarrow{b} is 60°, find the value of a\vert \overrightarrow{a} \vert .

Given,
b\vert \overrightarrow{b} \vert = 6
a.b\overrightarrow{a}.\overrightarrow{b} = 12
Angle between a\overrightarrow{a} and b\overrightarrow{b}(θ) = 60°

Now, from cosine angle between two vectors, cosθ = a.bab\frac{\overrightarrow{a} . \overrightarrow{b}}{\vert \overrightarrow{a} \vert \vert \overrightarrow{b} \vert} or, cos60° = 126a\frac{12}{6\vert \overrightarrow{a} \vert}
a\overrightarrow{a} = 2 × 2 = 4

If p\overrightarrow{p}.q\overrightarrow{q} = 183\sqrt 3, p\vert \overrightarrow{p} \vert = 6 and q\vert \overrightarrow{q} \vert = 6, find the angle between p\overrightarrow{p} and q\overrightarrow{q}.

Given,
p\vert \overrightarrow{p} \vert = 6
q\vert \overrightarrow{q} \vert = 6
p.q\overrightarrow{p} . \overrightarrow{q} = 183\sqrt 3

Let, θ be the angle between given vector. Then from cosine angle,
cosθ = a.bab\frac{\overrightarrow{a} . \overrightarrow{b}}{\vert \overrightarrow{a} \vert \vert \overrightarrow{b} \vert} = 18336\frac{18\sqrt 3}{36} = 32\frac{\sqrt 3}{2} = cos30°

∴ θ = 30°

If p\overrightarrow{p} + q\overrightarrow{q} + r\overrightarrow{r} = 0, p\vert \overrightarrow{p} \vert = 6, q\vert \overrightarrow{q} \vert = 7 and r\vert \overrightarrow{r} \vert = 127\sqrt {127}, find the angle between p\overrightarrow{p} and q\overrightarrow{q}.

Given,
p\vert \overrightarrow{p} \vert = 6
q\vert \overrightarrow{q} \vert = 7
r\vert \overrightarrow{r} \vert = 127\sqrt {127}

Now, p\overrightarrow{p} + q\overrightarrow{q} + r\overrightarrow{r} = 0 or, p\overrightarrow{p} + q\overrightarrow{q} = -r\overrightarrow{r}
Multiplying by same vector on both sides,
or, p+q\vert \overrightarrow{p} + \overrightarrow{q} \vert2 = r\vert -\overrightarrow{r} \vert2
or, p\vert \overrightarrow{p} \vert2 + 2p.q\overrightarrow{p}.\overrightarrow{q} + q\vert \overrightarrow{q} \vert2 = r\vert \overrightarrow{r} \vert2
or, 36 + 2p.q\overrightarrow{p}.\overrightarrow{q} + 49 = 127
so, p.q\overrightarrow{p}.\overrightarrow{q} = 21

Let, θ be the angle between p\overrightarrow{p} and q\overrightarrow{q}. Then from cosine angle,
cosθ = a.bab\frac{\overrightarrow{a} . \overrightarrow{b}}{\vert \overrightarrow{a} \vert \vert \overrightarrow{b} \vert} = 2142\frac{21}{42} = 12\frac 12 = cos60°

∴ θ = 60°

If a\overrightarrow{a} = -5i\overrightarrow{i} + 3j\overrightarrow{j} and b\overrightarrow{b} = pi\overrightarrow{i} + (p + 2)j\overrightarrow{j} are perpendicular to each other, find the value of p.

Given,
a\overrightarrow{a} = -5i\overrightarrow{i} + 3j\overrightarrow{j}
b\overrightarrow{b} = pi\overrightarrow{i} + (p + 2)j\overrightarrow{j}

Since, a\overrightarrow{a} is perpendicular to b\overrightarrow{b}, a\overrightarrow{a}.b\overrightarrow{b} = 0 or, (-5i\overrightarrow{i} + 3j\overrightarrow{j}).{pi\overrightarrow{i} + (p + 2)j\overrightarrow{j}} = 0
or, -5p(i\overrightarrow{i})2 - 5(p + 2)(i\overrightarrow{i}.j\overrightarrow{j}) + 3p(j\overrightarrow{j}.i\overrightarrow{i}) + 3(p + 2)(j\overrightarrow{j})2 = 0
We know, i\overrightarrow{i}.i\overrightarrow{i} = 1, j\overrightarrow{j}.j\overrightarrow{j} = 1, i\overrightarrow{i}.j\overrightarrow{j} = j\overrightarrow{j}.i\overrightarrow{i} = 0
or, -5p + 3(p + 2) = 0
or, 3p + 6 = 5p
so, p = 3

Find the angle between unit vector i\overrightarrow{i} and a\overrightarrow{a} = 3i\sqrt{3} \overrightarrow{i} + j\overrightarrow{j}.

Let, θ be the angle between unit vector i\overrightarrow{i} and a\overrightarrow{a} = 3i\sqrt{3} \overrightarrow{i} + j\overrightarrow{j}.

From cosine angle,
cosθ = i.aia\frac{\overrightarrow{i}.\overrightarrow{a}}{\vert \overrightarrow{i} \vert \vert \overrightarrow{a} \vert} = i.(3i+j)1(3)2+12\frac{\overrightarrow{i}.(\sqrt3 \overrightarrow{i} + \overrightarrow{j})}{1\sqrt{(\sqrt{3})^2 + 1^2}}
= 3(i)2+i.j2\frac{\sqrt{3}(\overrightarrow{i})^2 + \overrightarrow{i}.\overrightarrow{j}}{2}
= 32\frac{\sqrt3}{2}

So, θ = 30°

If a\overrightarrow{a} + 2b\overrightarrow{b} and 5a\overrightarrow{a} - 4b\overrightarrow{b} are perpendicular to each other and a\overrightarrow{a} and b\overrightarrow{b} are unit vectors, find the angle between a\overrightarrow{a} and b\overrightarrow{b}.

Let,
p\overrightarrow{p} = a\overrightarrow{a} + 2b\overrightarrow{b}
q\overrightarrow{q} = 5a\overrightarrow{a} - 4b\overrightarrow{b}

Since, p\overrightarrow{p} is perpendicular to q\overrightarrow{q}, p\overrightarrow{p}.q\overrightarrow{q} = 0 or, (a\overrightarrow{a} + 2b\overrightarrow{b}).(5a\overrightarrow{a} - 4b\overrightarrow{b}) = 0
or, 5(a\overrightarrow{a})2 - 4(a\overrightarrow{a}.b\overrightarrow{b}) + 10(b\overrightarrow{b}.a\overrightarrow{a}) - 8(b\overrightarrow{b})2 = 0
a\overrightarrow{a} and b\overrightarrow{b} are unit vector. so, (a\overrightarrow{a})2 = (b\overrightarrow{b})2 = 1
or, -3 + 6a\overrightarrow{a}.b\overrightarrow{b} = 0
so, a\overrightarrow{a}.b\overrightarrow{b} = 12\frac 12

Let, θ be the angle between given vector. Then from cosine angle,
cosθ = a.bab\frac{\overrightarrow{a} . \overrightarrow{b}}{\vert \overrightarrow{a} \vert \vert \overrightarrow{b} \vert} = 121\frac{\frac 12}{1} = cos60°

so, θ = 60°

If a\vert \overrightarrow{a} \vert = 53\sqrt3, b\vert \overrightarrow{b} \vert = 6 and θ = 30°, find the value of a.b\overrightarrow{a}.\overrightarrow{b}.

Given,
a\vert \overrightarrow{a} \vert = 53\sqrt3
b\vert \overrightarrow{b} \vert = 6
θ = 30°

From cosine angle, cosθ = a.bab\frac{\overrightarrow{a} . \overrightarrow{b}}{\vert \overrightarrow{a} \vert \vert \overrightarrow{b} \vert} or, cos30° = a.b303\frac{\overrightarrow{a} . \overrightarrow{b}}{30\sqrt{3}}
or, 32\frac{\sqrt3}{2} × 303\sqrt3 = a\overrightarrow{a} . b\overrightarrow{b}
a\overrightarrow{a} . b\overrightarrow{b} = 45

If p\overrightarrow{p} = 2i\overrightarrow{i} + 3j\overrightarrow{j}, q\overrightarrow{q} = -ai\overrightarrow{i} + 4j\overrightarrow{j} and p.q\overrightarrow{p}.\overrightarrow{q} = 0, find the value of a.

Given, p\overrightarrow{p} = 2i\overrightarrow{i} + 3j\overrightarrow{j}
q\overrightarrow{q} = -ai\overrightarrow{i} + 4j\overrightarrow{j}
p.q\overrightarrow{p}.\overrightarrow{q} = 0

Now, p.q\overrightarrow{p}.\overrightarrow{q} = 0 or, (2i\overrightarrow{i} + 3j\overrightarrow{j}).(-ai\overrightarrow{i} + 4j\overrightarrow{j}) = 0
or, -2a(i\overrightarrow{i})2 + 8(i\overrightarrow{i}.j\overrightarrow{j}) - 3a(j\overrightarrow{j}.i\overrightarrow{i}) + 12(j\overrightarrow{j})2 = 0
We know, i\overrightarrow{i}.i\overrightarrow{i} = 1, j\overrightarrow{j}.j\overrightarrow{j} = 1, i\overrightarrow{i}.j\overrightarrow{j} = j\overrightarrow{j}.i\overrightarrow{i} = 0
or, -2a + 12 = 0
∴ a = 6

If a\overrightarrow{a} = 3i\overrightarrow{i} - mj\overrightarrow{j} and b\overrightarrow{b} = 10i\overrightarrow{i} + 6j\overrightarrow{j} are perpendicular to each other, what is the value of m?

Given,
a\overrightarrow{a} = 3i\overrightarrow{i} - mj\overrightarrow{j}
b\overrightarrow{b} = 10i\overrightarrow{i} + 6j\overrightarrow{j}

Since, a\overrightarrow{a} is perpendicular to b\overrightarrow{b}, a.b\overrightarrow{a} . \overrightarrow{b} = 0 or, (3i\overrightarrow{i} - mj\overrightarrow{j}).(10i\overrightarrow{i} + 6j\overrightarrow{j}) = 0
or, 30(i\overrightarrow{i})2 + 18(i.j\overrightarrow{i}.\overrightarrow{j}) - 10m(j.i\overrightarrow{j}.\overrightarrow{i}) - 6m(j\overrightarrow{j})2 = 0
We know, i\overrightarrow{i}.i\overrightarrow{i} = 1, j\overrightarrow{j}.j\overrightarrow{j} = 1, i\overrightarrow{i}.j\overrightarrow{j} = j\overrightarrow{j}.i\overrightarrow{i} = 0
or, 30 - 6m = 0
∴ m = 5