If p → \overrightarrow{p} p .q → \overrightarrow{q} q = 6, ∣ q → ∣ \vert \overrightarrow{q} \vert ∣ q ∣ = 23 \sqrt 3 3 unit and the angle between p → \overrightarrow{p} p and q → \overrightarrow{q} q is 30°, find the length of p → \overrightarrow{p} p .
Given,
∣ q → ∣ \vert \overrightarrow{q} \vert ∣ q ∣ = 2
3 \sqrt 3 3
p → \overrightarrow{p} p .
q → \overrightarrow{q} q = 6
∣ p → ∣ \vert \overrightarrow{p} \vert ∣ p ∣ = ?
Let, θ = 30° be the angle between given vector. Then from cosine angle,
cosθ = p → . q → ∣ p → ∣ ∣ q → ∣ \frac{\overrightarrow{p} . \overrightarrow{q}}{\vert \overrightarrow{p} \vert \vert \overrightarrow{q} \vert} ∣ p ∣∣ q ∣ p . q
or, cos30° = 6 ∣ p → ∣ 2 3 \frac{6}{\vert \overrightarrow{p} \vert 2\sqrt 3} ∣ p ∣2 3 6
or, ∣ p → ∣ \vert \overrightarrow{p} \vert ∣ p ∣ = 6 3 2 × 2 3 \frac{6}{\frac{\sqrt 3}{2} \times 2\sqrt 3} 2 3 × 2 3 6
∴ ∣ p → ∣ \vert \overrightarrow{p} \vert ∣ p ∣ = 2 unit
If ∣ a → ∣ \vert \overrightarrow{a} \vert ∣ a ∣ = 4, ∣ b → ∣ \vert \overrightarrow{b} \vert ∣ b ∣ = 5 and a → . b → \overrightarrow{a} . \overrightarrow{b} a . b = 10, then find the angle between a → \overrightarrow{a} a and b → \overrightarrow{b} b .
Given,
∣ a → ∣ \vert \overrightarrow{a} \vert ∣ a ∣ = 4
∣ b → ∣ \vert \overrightarrow{b} \vert ∣ b ∣ = 5
a → . b → \overrightarrow{a} . \overrightarrow{b} a . b = 10
Let, θ be the angle between given vector. Then from cosine angle,
cosθ = a → . b → ∣ a → ∣ ∣ b → ∣ \frac{\overrightarrow{a} . \overrightarrow{b}}{\vert \overrightarrow{a} \vert \vert \overrightarrow{b} \vert} ∣ a ∣∣ b ∣ a . b = 10 20 \frac{10}{20} 20 10 = cos60°
∴ θ = 60°
If ∣ a → ∣ \vert \overrightarrow{a} \vert ∣ a ∣ = 33 \sqrt 3 3 , ∣ b → ∣ \vert \overrightarrow{b} \vert ∣ b ∣ = 4 and angle between ∣ a → ∣ \vert \overrightarrow{a} \vert ∣ a ∣ and ∣ b → ∣ \vert \overrightarrow{b} \vert ∣ b ∣ , θ = 60° then find the value of a → . b → \overrightarrow{a}.\overrightarrow{b} a . b .
Given,
∣ a → ∣ \vert \overrightarrow{a} \vert ∣ a ∣ = 3
3 \sqrt 3 3
∣ a → ∣ \vert \overrightarrow{a} \vert ∣ a ∣ = 4
Angle between
∣ a → ∣ \vert \overrightarrow{a} \vert ∣ a ∣ amd
∣ b → ∣ \vert \overrightarrow{b} \vert ∣ b ∣ , θ = 60°
Now, from cosine angle between two vectors,
cosθ = a → . b → ∣ a → ∣ ∣ b → ∣ \frac{\overrightarrow{a} . \overrightarrow{b}}{\vert \overrightarrow{a} \vert \vert \overrightarrow{b} \vert} ∣ a ∣∣ b ∣ a . b
or, cos60° = a → . b → 12 3 \frac{\overrightarrow{a} . \overrightarrow{b}}{12\sqrt{3}} 12 3 a . b
or, 12 3 2 \frac{12\sqrt{3}}{2} 2 12 3 = a → . b → \overrightarrow{a} . \overrightarrow{b} a . b
∴ a → . b → \overrightarrow{a} . \overrightarrow{b} a . b = 63 \sqrt3 3
10i → \overrightarrow{i} i - 7j → \overrightarrow{j} j and ai → \overrightarrow{i} i + 10j → \overrightarrow{j} j are perpendicular to each other, find the value of a.
Let,
a → \overrightarrow{a} a = 10
i → \overrightarrow{i} i - 7
j → \overrightarrow{j} j
b → \overrightarrow{b} b = a
i → \overrightarrow{i} i + 10
j → \overrightarrow{j} j
Since, a → \overrightarrow{a} a is perpendicular to b → \overrightarrow{b} b ,
a → . b → \overrightarrow{a} . \overrightarrow{b} a . b = 0
or, (10i → \overrightarrow{i} i - 7j → \overrightarrow{j} j ).(ai → \overrightarrow{i} i + 10j → \overrightarrow{j} j ) = 0
or, 10a(i → \overrightarrow{i} i )2 + 100(i → . j → \overrightarrow{i}.\overrightarrow{j} i . j ) - 7a(j → . i → \overrightarrow{j}.\overrightarrow{i} j . i ) - 70(j → \overrightarrow{j} j )2 = 0
We know, i → \overrightarrow{i} i .i → \overrightarrow{i} i = 1, j → \overrightarrow{j} j .j → \overrightarrow{j} j = 1, i → \overrightarrow{i} i .j → \overrightarrow{j} j = j → \overrightarrow{j} j .i → \overrightarrow{i} i = 0
so, 10a + 0 - 0 - 70 = 0
∴ a = 7.
If a → \overrightarrow{a} a = 4i → \overrightarrow{i} i + 2j → \overrightarrow{j} j and b → \overrightarrow{b} b = -i → \overrightarrow{i} i + 2j → \overrightarrow{j} j , then find the angle between a → \overrightarrow{a} a and b → \overrightarrow{b} b .
Here,
a → \overrightarrow{a} a = 4
i → \overrightarrow{i} i + 2
j → \overrightarrow{j} j
b → \overrightarrow{b} b = -
i → \overrightarrow{i} i + 2
j → \overrightarrow{j} j
Now,
a → . b → \overrightarrow{a} . \overrightarrow{b} a . b = (4i → \overrightarrow{i} i + 2j → \overrightarrow{j} j ) . (-i → \overrightarrow{i} i + 2j → \overrightarrow{j} j ) = -4 + 4 = 0
Let, θ be the angle between given vector. Then from cosine angle,
cosθ = a → . b → ∣ a → ∣ ∣ b → ∣ \frac{\overrightarrow{a} . \overrightarrow{b}}{\vert \overrightarrow{a} \vert \vert \overrightarrow{b} \vert} ∣ a ∣∣ b ∣ a . b = 0 ∣ a → ∣ ∣ b → ∣ \frac{0}{\vert \overrightarrow{a} \vert \vert \overrightarrow{b} \vert} ∣ a ∣∣ b ∣ 0 = cos90°
∴ θ = 90°
If ∣ b → ∣ \vert \overrightarrow{b} \vert ∣ b ∣ = 6, a → . b → \overrightarrow{a}.\overrightarrow{b} a . b = 12 and angle between a → \overrightarrow{a} a and b → \overrightarrow{b} b is 60°, find the value of ∣ a → ∣ \vert \overrightarrow{a} \vert ∣ a ∣ .
Given,
∣ b → ∣ \vert \overrightarrow{b} \vert ∣ b ∣ = 6
a → . b → \overrightarrow{a}.\overrightarrow{b} a . b = 12
Angle between
a → \overrightarrow{a} a and
b → \overrightarrow{b} b (θ) = 60°
Now, from cosine angle between two vectors,
cosθ = a → . b → ∣ a → ∣ ∣ b → ∣ \frac{\overrightarrow{a} . \overrightarrow{b}}{\vert \overrightarrow{a} \vert \vert \overrightarrow{b} \vert} ∣ a ∣∣ b ∣ a . b
or, cos60° = 12 6 ∣ a → ∣ \frac{12}{6\vert \overrightarrow{a} \vert} 6∣ a ∣ 12
∴ a → \overrightarrow{a} a = 2 × 2 = 4
If p → \overrightarrow{p} p .q → \overrightarrow{q} q = 183 \sqrt 3 3 , ∣ p → ∣ \vert \overrightarrow{p} \vert ∣ p ∣ = 6 and ∣ q → ∣ \vert \overrightarrow{q} \vert ∣ q ∣ = 6, find the angle between p → \overrightarrow{p} p and q → \overrightarrow{q} q .
Given,
∣ p → ∣ \vert \overrightarrow{p} \vert ∣ p ∣ = 6
∣ q → ∣ \vert \overrightarrow{q} \vert ∣ q ∣ = 6
p → . q → \overrightarrow{p} . \overrightarrow{q} p . q = 18
3 \sqrt 3 3
Let, θ be the angle between given vector. Then from cosine angle,
cosθ = a → . b → ∣ a → ∣ ∣ b → ∣ \frac{\overrightarrow{a} . \overrightarrow{b}}{\vert \overrightarrow{a} \vert \vert \overrightarrow{b} \vert} ∣ a ∣∣ b ∣ a . b = 18 3 36 \frac{18\sqrt 3}{36} 36 18 3 = 3 2 \frac{\sqrt 3}{2} 2 3 = cos30°
∴ θ = 30°
If p → \overrightarrow{p} p + q → \overrightarrow{q} q + r → \overrightarrow{r} r = 0, ∣ p → ∣ \vert \overrightarrow{p} \vert ∣ p ∣ = 6, ∣ q → ∣ \vert \overrightarrow{q} \vert ∣ q ∣ = 7 and ∣ r → ∣ \vert \overrightarrow{r} \vert ∣ r ∣ = 127 \sqrt {127} 127 , find the angle between p → \overrightarrow{p} p and q → \overrightarrow{q} q .
Given,
∣ p → ∣ \vert \overrightarrow{p} \vert ∣ p ∣ = 6
∣ q → ∣ \vert \overrightarrow{q} \vert ∣ q ∣ = 7
∣ r → ∣ \vert \overrightarrow{r} \vert ∣ r ∣ =
127 \sqrt {127} 127
Now,
p → \overrightarrow{p} p + q → \overrightarrow{q} q + r → \overrightarrow{r} r = 0
or, p → \overrightarrow{p} p + q → \overrightarrow{q} q = -r → \overrightarrow{r} r
Multiplying by same vector on both sides,
or, ∣ p → + q → ∣ \vert \overrightarrow{p} + \overrightarrow{q} \vert ∣ p + q ∣ 2 = ∣ − r → ∣ \vert -\overrightarrow{r} \vert ∣ − r ∣ 2
or, ∣ p → ∣ \vert \overrightarrow{p} \vert ∣ p ∣ 2 + 2p → . q → \overrightarrow{p}.\overrightarrow{q} p . q + ∣ q → ∣ \vert \overrightarrow{q} \vert ∣ q ∣ 2 = ∣ r → ∣ \vert \overrightarrow{r} \vert ∣ r ∣ 2
or, 36 + 2p → . q → \overrightarrow{p}.\overrightarrow{q} p . q + 49 = 127
so, p → . q → \overrightarrow{p}.\overrightarrow{q} p . q = 21
Let, θ be the angle between p → \overrightarrow{p} p and q → \overrightarrow{q} q . Then from cosine angle,
cosθ = a → . b → ∣ a → ∣ ∣ b → ∣ \frac{\overrightarrow{a} . \overrightarrow{b}}{\vert \overrightarrow{a} \vert \vert \overrightarrow{b} \vert} ∣ a ∣∣ b ∣ a . b = 21 42 \frac{21}{42} 42 21 = 1 2 \frac 12 2 1 = cos60°
∴ θ = 60°
If a → \overrightarrow{a} a = -5i → \overrightarrow{i} i + 3j → \overrightarrow{j} j and b → \overrightarrow{b} b = pi → \overrightarrow{i} i + (p + 2)j → \overrightarrow{j} j are perpendicular to each other, find the value of p .
Given,
a → \overrightarrow{a} a = -5
i → \overrightarrow{i} i + 3
j → \overrightarrow{j} j
b → \overrightarrow{b} b = p
i → \overrightarrow{i} i + (p + 2)
j → \overrightarrow{j} j
Since, a → \overrightarrow{a} a is perpendicular to b → \overrightarrow{b} b ,
a → \overrightarrow{a} a .b → \overrightarrow{b} b = 0
or, (-5i → \overrightarrow{i} i + 3j → \overrightarrow{j} j ).{pi → \overrightarrow{i} i + (p + 2)j → \overrightarrow{j} j } = 0
or, -5p(i → \overrightarrow{i} i )2 - 5(p + 2)(i → \overrightarrow{i} i .j → \overrightarrow{j} j ) + 3p(j → \overrightarrow{j} j .i → \overrightarrow{i} i ) + 3(p + 2)(j → \overrightarrow{j} j )2 = 0
We know, i → \overrightarrow{i} i .i → \overrightarrow{i} i = 1, j → \overrightarrow{j} j .j → \overrightarrow{j} j = 1, i → \overrightarrow{i} i .j → \overrightarrow{j} j = j → \overrightarrow{j} j .i → \overrightarrow{i} i = 0
or, -5p + 3(p + 2) = 0
or, 3p + 6 = 5p
so, p = 3
Find the angle between unit vector i → \overrightarrow{i} i and a → \overrightarrow{a} a = 3 i → \sqrt{3} \overrightarrow{i} 3 i + j → \overrightarrow{j} j .
Let, θ be the angle between unit vector
i → \overrightarrow{i} i and
a → \overrightarrow{a} a =
3 i → \sqrt{3} \overrightarrow{i} 3 i +
j → \overrightarrow{j} j .
From cosine angle,
cosθ = i → . a → ∣ i → ∣ ∣ a → ∣ \frac{\overrightarrow{i}.\overrightarrow{a}}{\vert \overrightarrow{i} \vert \vert \overrightarrow{a} \vert} ∣ i ∣∣ a ∣ i . a
= i → . ( 3 i → + j → ) 1 ( 3 ) 2 + 1 2 \frac{\overrightarrow{i}.(\sqrt3 \overrightarrow{i} + \overrightarrow{j})}{1\sqrt{(\sqrt{3})^2 + 1^2}} 1 ( 3 ) 2 + 1 2 i . ( 3 i + j )
= 3 ( i → ) 2 + i → . j → 2 \frac{\sqrt{3}(\overrightarrow{i})^2 + \overrightarrow{i}.\overrightarrow{j}}{2} 2 3 ( i ) 2 + i . j
= 3 2 \frac{\sqrt3}{2} 2 3
So, θ = 30°
If a → \overrightarrow{a} a + 2b → \overrightarrow{b} b and 5a → \overrightarrow{a} a - 4b → \overrightarrow{b} b are perpendicular to each other and a → \overrightarrow{a} a and b → \overrightarrow{b} b are unit vectors, find the angle between a → \overrightarrow{a} a and b → \overrightarrow{b} b .
Let,
p → \overrightarrow{p} p =
a → \overrightarrow{a} a + 2
b → \overrightarrow{b} b
q → \overrightarrow{q} q = 5
a → \overrightarrow{a} a - 4
b → \overrightarrow{b} b
Since, p → \overrightarrow{p} p is perpendicular to q → \overrightarrow{q} q ,
p → \overrightarrow{p} p .q → \overrightarrow{q} q = 0
or, (a → \overrightarrow{a} a + 2b → \overrightarrow{b} b ).(5a → \overrightarrow{a} a - 4b → \overrightarrow{b} b ) = 0
or, 5(a → \overrightarrow{a} a )2 - 4(a → \overrightarrow{a} a .b → \overrightarrow{b} b ) + 10(b → \overrightarrow{b} b .a → \overrightarrow{a} a ) - 8(b → \overrightarrow{b} b )2 = 0
a → \overrightarrow{a} a and b → \overrightarrow{b} b are unit vector. so, (a → \overrightarrow{a} a )2 = (b → \overrightarrow{b} b )2 = 1
or, -3 + 6a → \overrightarrow{a} a .b → \overrightarrow{b} b = 0
so, a → \overrightarrow{a} a .b → \overrightarrow{b} b = 1 2 \frac 12 2 1
Let, θ be the angle between given vector. Then from cosine angle,
cosθ = a → . b → ∣ a → ∣ ∣ b → ∣ \frac{\overrightarrow{a} . \overrightarrow{b}}{\vert \overrightarrow{a} \vert \vert \overrightarrow{b} \vert} ∣ a ∣∣ b ∣ a . b = 1 2 1 \frac{\frac 12}{1} 1 2 1 = cos60°
so, θ = 60°
If ∣ a → ∣ \vert \overrightarrow{a} \vert ∣ a ∣ = 53 \sqrt3 3 , ∣ b → ∣ \vert \overrightarrow{b} \vert ∣ b ∣ = 6 and θ = 30°, find the value of a → . b → \overrightarrow{a}.\overrightarrow{b} a . b .
Given,
∣ a → ∣ \vert \overrightarrow{a} \vert ∣ a ∣ = 5
3 \sqrt3 3 ∣ b → ∣ \vert \overrightarrow{b} \vert ∣ b ∣ = 6
θ = 30°
From cosine angle,
cosθ = a → . b → ∣ a → ∣ ∣ b → ∣ \frac{\overrightarrow{a} . \overrightarrow{b}}{\vert \overrightarrow{a} \vert \vert \overrightarrow{b} \vert} ∣ a ∣∣ b ∣ a . b
or, cos30° = a → . b → 30 3 \frac{\overrightarrow{a} . \overrightarrow{b}}{30\sqrt{3}} 30 3 a . b
or, 3 2 \frac{\sqrt3}{2} 2 3 × 303 \sqrt3 3 = a → \overrightarrow{a} a . b → \overrightarrow{b} b
∴ a → \overrightarrow{a} a . b → \overrightarrow{b} b = 45
If p → \overrightarrow{p} p = 2i → \overrightarrow{i} i + 3j → \overrightarrow{j} j , q → \overrightarrow{q} q = -ai → \overrightarrow{i} i + 4j → \overrightarrow{j} j and p → . q → \overrightarrow{p}.\overrightarrow{q} p . q = 0, find the value of a .
Given,
p → \overrightarrow{p} p = 2i → \overrightarrow{i} i + 3j → \overrightarrow{j} j
q → \overrightarrow{q} q = -ai → \overrightarrow{i} i + 4j → \overrightarrow{j} j p → . q → \overrightarrow{p}.\overrightarrow{q} p . q = 0
Now,
p → . q → \overrightarrow{p}.\overrightarrow{q} p . q = 0
or, (2i → \overrightarrow{i} i + 3j → \overrightarrow{j} j ).(-ai → \overrightarrow{i} i + 4j → \overrightarrow{j} j ) = 0
or, -2a(i → \overrightarrow{i} i )2 + 8(i → \overrightarrow{i} i .j → \overrightarrow{j} j ) - 3a(j → \overrightarrow{j} j .i → \overrightarrow{i} i ) + 12(j → \overrightarrow{j} j )2 = 0
We know, i → \overrightarrow{i} i .i → \overrightarrow{i} i = 1, j → \overrightarrow{j} j .j → \overrightarrow{j} j = 1, i → \overrightarrow{i} i .j → \overrightarrow{j} j = j → \overrightarrow{j} j .i → \overrightarrow{i} i = 0
or, -2a + 12 = 0
∴ a = 6
If a → \overrightarrow{a} a = 3i → \overrightarrow{i} i - mj → \overrightarrow{j} j and b → \overrightarrow{b} b = 10i → \overrightarrow{i} i + 6j → \overrightarrow{j} j are perpendicular to each other, what is the value of m ?
Given,
a → \overrightarrow{a} a = 3
i → \overrightarrow{i} i - m
j → \overrightarrow{j} j b → \overrightarrow{b} b = 10
i → \overrightarrow{i} i + 6
j → \overrightarrow{j} j
Since, a → \overrightarrow{a} a is perpendicular to b → \overrightarrow{b} b ,
a → . b → \overrightarrow{a} . \overrightarrow{b} a . b = 0
or, (3i → \overrightarrow{i} i - mj → \overrightarrow{j} j ).(10i → \overrightarrow{i} i + 6j → \overrightarrow{j} j ) = 0
or, 30(i → \overrightarrow{i} i )2 + 18(i → . j → \overrightarrow{i}.\overrightarrow{j} i . j ) - 10m(j → . i → \overrightarrow{j}.\overrightarrow{i} j . i ) - 6m(j → \overrightarrow{j} j )2 = 0
We know, i → \overrightarrow{i} i .i → \overrightarrow{i} i = 1, j → \overrightarrow{j} j .j → \overrightarrow{j} j = 1, i → \overrightarrow{i} i .j → \overrightarrow{j} j = j → \overrightarrow{j} j .i → \overrightarrow{i} i = 0
or, 30 - 6m = 0
∴ m = 5