Go to main content

Solve (x-1)/(sqrt x + 1) = 4 + (sqrt x - 1)/2

help to solve this pls

rames asked 2 years ago·

x1x+1\frac{x , - ,1 }{\sqrt x , + , 1} = 4 + x12\frac{\sqrt x , - , 1}{2}

or, x1x+1×x1x1\frac{x , - ,1 }{\sqrt x , + , 1} \times \frac{\sqrt x , - , 1}{\sqrt x , - , 1} = 7+x2\frac{7 , + , \sqrt x}{2}

or, xxxx+1x1\frac{x\sqrt x , - , x , - , \sqrt x , + , 1}{x , - ,1} = 7+x2\frac{7 , + , \sqrt x}{2}

or, 2xx2x2x+22x\sqrt x , - , 2x , - , 2\sqrt x , + , 2 = 7x + xxx\sqrt x - 7 - x\sqrt x

or, xx9xx+9x\sqrt x , - , 9x , - , \sqrt x , + , 9 = 0

or, x\sqrt x(x - 1) - 9(x - 1) = 0

or, (x - 1)(x\sqrt x - 9) = 0

Either, x = 1 (Not possible)

OR, x\sqrt x = 9

Squaring on both sides,

or, (x)2(\sqrt x)^2 = 9

∴ x = 81

Video explanation:

dibas answered 2 years ago