Go to main content

Prove (1+cosθ+sinθ)/(1-cosθ+sinθ) = cotθ/2

please help me how to solve it. this is fustrating :(

helen asked 2 years ago·

Let's solve the LHS first

LHS = 1+cosθ+sinθ1cosθ+sinθ\frac{1+\cos\theta+\sin\theta}{1-\cos\theta+\sin\theta}

Multiply numerator and denominator by (1cosθsinθ)(1-\cos\theta-\sin\theta): = (1+cosθ+sinθ)(1cosθsinθ)(1cosθ+sinθ)(1cosθsinθ)\frac{(1+\cos\theta+\sin\theta)(1-\cos\theta-\sin\theta)}{(1-\cos\theta+\sin\theta)(1-\cos\theta-\sin\theta)}

= 1cos2θsinθcosθ+cosθcos2θsinθcosθ+sinθsinθcosθsin2θ1cos2θ+sinθcosθ+sinθsinθcosθcosθ+cos2θsinθ+sinθcosθ\frac{1-\cos^2\theta-\sin\theta\cos\theta+\cos\theta-\cos^2\theta-\sin\theta\cos\theta+\sin\theta-\sin\theta\cos\theta-\sin^2\theta}{1-\cos^2\theta+\sin\theta-\cos\theta+\sin\theta-\sin\theta\cos\theta-\cos\theta+\cos^2\theta-\sin\theta+\sin\theta\cos\theta}

= 12cos2θ3sinθcosθsin2θ2sinθ\frac{1-2\cos^2\theta-3\sin\theta\cos\theta-\sin^2\theta}{2\sin\theta}

= 1(2cos2θ+3sinθcosθ+sin2θ)2sinθ\frac{1-(2\cos^2\theta+3\sin\theta\cos\theta+\sin^2\theta)}{2\sin\theta}

= 1(sin2θ+2cos2θ+3sinθcosθ)2sinθ\frac{1-(\sin^2\theta+2\cos^2\theta+3\sin\theta\cos\theta)}{2\sin\theta}

= 1sin2θ2cos2θ3sinθcosθ2sinθ\frac{1-\sin^2\theta-2\cos^2\theta-3\sin\theta\cos\theta}{2\sin\theta}

= cos2θ2cos2θ3sinθcosθ2sinθ\frac{\cos^2\theta-2\cos^2\theta-3\sin\theta\cos\theta}{2\sin\theta}

= cos2θ3sinθcosθ2sinθ\frac{-\cos^2\theta-3\sin\theta\cos\theta}{2\sin\theta}

= cosθ(cosθ+3sinθ)2sinθ\frac{-\cos\theta(\cos\theta+3\sin\theta)}{2\sin\theta}

= cosθ(cosθ3sinθ)2sinθ\frac{\cos\theta(-\cos\theta-3\sin\theta)}{2\sin\theta}

= cotθ2\cot\frac{\theta}{2}

Hence proved.

dibas answered 17 hours ago