Go to main content

If sin(theta/2) = 1/2(a+1/a), prove that: cos(theta) = -1/2(a^2 + 1/a^2)

help please

Solution:

Given: sinθ2=12(a+1a)\sin\frac{\theta}{2} = \frac{1}{2}\left(a+\frac{1}{a}\right)

To prove: cosθ=12(a2+1a2)\cos\theta = -\frac{1}{2}\left(a^2 + \frac{1}{a^2}\right)

We'll use the double angle formula for cosine:

cos(2α)=12sin2α\cos(2\alpha) = 1 - 2\sin^2\alpha

Let α=θ2\alpha = \frac{\theta}{2}, then:

cosθ=cos(2×θ2)=12sin2θ2\cos\theta = \cos\left(2 \times \frac{\theta}{2}\right) = 1 - 2\sin^2\frac{\theta}{2}

First, let's find sin2θ2\sin^2\frac{\theta}{2}:

sin2θ2=[12(a+1a)]2\sin^2\frac{\theta}{2} = \left[\frac{1}{2}\left(a+\frac{1}{a}\right)\right]^2

=14(a+1a)2= \frac{1}{4}\left(a+\frac{1}{a}\right)^2

Now, let's expand (a+1a)2\left(a+\frac{1}{a}\right)^2:

(a+1a)2=a2+2×a×1a+1a2\left(a+\frac{1}{a}\right)^2 = a^2 + 2 \times a \times \frac{1}{a} + \frac{1}{a^2}

=a2+2+1a2= a^2 + 2 + \frac{1}{a^2}

Therefore:

sin2θ2=14(a2+2+1a2)\sin^2\frac{\theta}{2} = \frac{1}{4}\left(a^2 + 2 + \frac{1}{a^2}\right)

=14(a2+1a2)+14×2= \frac{1}{4}\left(a^2 + \frac{1}{a^2}\right) + \frac{1}{4} \times 2

=14(a2+1a2)+12= \frac{1}{4}\left(a^2 + \frac{1}{a^2}\right) + \frac{1}{2}

Substituting back into the double angle formula:

cosθ=12sin2θ2\cos\theta = 1 - 2\sin^2\frac{\theta}{2}

=12[14(a2+1a2)+12]= 1 - 2\left[\frac{1}{4}\left(a^2 + \frac{1}{a^2}\right) + \frac{1}{2}\right]

=112(a2+1a2)1= 1 - \frac{1}{2}\left(a^2 + \frac{1}{a^2}\right) - 1

=12(a2+1a2)= -\frac{1}{2}\left(a^2 + \frac{1}{a^2}\right)

Hence proved.

dibas answered 5 days ago