Go to main content

If sinA/3 = 1/2(a + 1/a), prove that: sinA = -1/2(a^3 + 1/a^3)

please help
dibas asked 2 years ago·

We are given: sinA3=12(a+1a)\sin \frac{A}{3} = \frac{1}{2}\left(a + \frac{1}{a}\right)

We need to prove: sinA=12(a3+1a3)\sin A = -\frac{1}{2}\left(a^3 + \frac{1}{a^3}\right)

Using the triple angle formula for sine: sin3θ=3sinθ4sin3θ\sin 3\theta = 3\sin \theta - 4\sin^3 \theta

Let θ=A3\theta = \frac{A}{3}, then: sinA=3sinA34sin3A3\sin A = 3\sin \frac{A}{3} - 4\sin^3 \frac{A}{3}

Substituting the given value: sinA=312(a+1a)4(12(a+1a))3\sin A = 3 \cdot \frac{1}{2}\left(a + \frac{1}{a}\right) - 4\left(\frac{1}{2}\left(a + \frac{1}{a}\right)\right)^3

Simplifying: sinA=32(a+1a)48(a+1a)3\sin A = \frac{3}{2}\left(a + \frac{1}{a}\right) - \frac{4}{8}\left(a + \frac{1}{a}\right)^3

sinA=32(a+1a)12(a+1a)3\sin A = \frac{3}{2}\left(a + \frac{1}{a}\right) - \frac{1}{2}\left(a + \frac{1}{a}\right)^3

Expanding (a+1a)3\left(a + \frac{1}{a}\right)^3: (a+1a)3=a3+3a+3a+1a3\left(a + \frac{1}{a}\right)^3 = a^3 + 3a + \frac{3}{a} + \frac{1}{a^3}

Substituting back: sinA=32(a+1a)12(a3+3a+3a+1a3)\sin A = \frac{3}{2}\left(a + \frac{1}{a}\right) - \frac{1}{2}\left(a^3 + 3a + \frac{3}{a} + \frac{1}{a^3}\right)

sinA=32a+32a12a332a32a12a3\sin A = \frac{3}{2}a + \frac{3}{2a} - \frac{1}{2}a^3 - \frac{3}{2}a - \frac{3}{2a} - \frac{1}{2a^3}

sinA=12a312a3\sin A = -\frac{1}{2}a^3 - \frac{1}{2a^3}

sinA=12(a3+1a3)\sin A = -\frac{1}{2}\left(a^3 + \frac{1}{a^3}\right)

Therefore, we have proved that: sinA=12(a3+1a3)\sin A = -\frac{1}{2}\left(a^3 + \frac{1}{a^3}\right)

rames answered 21 hours ago