cosθ\thetaθ = 34\frac 3443
sin2θsin2\thetasin2θ = 2sinθ×cosθ2sin\theta \times cos\theta2sinθ×cosθ = 2sinθ×342sin\theta \times \frac 342sinθ×43 --- (i)
sin2θsin^2 \thetasin2θ = 1 - cos2θcos^2 \thetacos2θ
sinθsin \thetasinθ = 1−(34)2\sqrt{1 - (\frac 34)^2}1−(43)2 = 74\frac {\sqrt7}{4}47
From (i), sin2θsin2\thetasin2θ = 378\frac{3\sqrt7}{8}837